WEAR TESTING OF THE HERMeS THRUSTER
AIAA-2016-5025

George J. Williams and James H Gilland
Ohio Aerospace Institute, NASA GRC, Cleveland, OH 44142

Peter Y. Peterson
Vantage Partners LLC, NASA GRC, Cleveland, OH 44135

Hani Kamhawi, Wensheng Huang,
Drew W. Ahern, John Yim,
and Daniel A. Herman
NASA Glenn Research Center, Cleveland, OH 44135

Richard R. Hofer and Michael Sekerak
NASA JPL, Pasadena, CA 91109

52nd Joint Propulsion Conference
July, 2016
Outline

• Background
• Objectives
• Overview
 – Test Article
 – Test Configuration
• Wear Test Segments
• Trends in data
 – Deposition on BN
 – Performance
 – Pole Cover Wear
 – Other Wear
• Summary
• Current Status
Context and Motivation

Asteroid Redirect Robotic Mission (ARRM)
- 50 kW-class SEP spacecraft
- SEP Technology Demonstration Mission

Ion Propulsion System: High-power HET
- Heliocentric transfer from Earth to asteroid
- Orbit capture at asteroid
- Transfer to low-asteroid orbit
- Planetary-defense demonstration
- Departure and escape from asteroid
- Heliocentric transfer from asteroid to lunar orbit
- Insertion into a lunar distant retrograde orbit
- Pitch and yaw control throughout

Artists conception of the ARRM spacecraft

12.5 kW HERMeS operation in VF-5 at GRC
Wear Test Objectives

Objective 1: Quantify wear trends over and extended period of TDU operation to identify unknown failure modes and support validation of service-life models

<table>
<thead>
<tr>
<th>Objective/metric</th>
<th>Category</th>
<th>Measurement</th>
<th>Measurement Method</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component erosion</td>
<td>Primary</td>
<td>Surface height profile</td>
<td>Optical profilometry</td>
<td>Pre/post-test (pre/post-test segment)</td>
</tr>
<tr>
<td>Anomalous (visible) erosion</td>
<td>Primary</td>
<td>Digital images of TDU surfaces</td>
<td>Digital cameras</td>
<td>On-demand</td>
</tr>
<tr>
<td>Real-time assessment of B & C fluxes</td>
<td>Secondary</td>
<td>Relative density of sputtered atoms</td>
<td>Optical emission spectra</td>
<td>On-demand</td>
</tr>
<tr>
<td>Cathode depletion</td>
<td>Primary</td>
<td>Weight of insert</td>
<td>High-resolution balance</td>
<td>Pre/post-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orifice Plate Temperature</td>
<td>Thermocouple</td>
<td>Continuous</td>
</tr>
<tr>
<td>Thermal deformation</td>
<td>Primary</td>
<td>TDU component temperatures</td>
<td>Thermocouple</td>
<td>Continuous</td>
</tr>
<tr>
<td>Emitter temperature</td>
<td>Secondary</td>
<td>HCA orifice plate temperature</td>
<td>Thermocouple</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Potential wear sites (& mitigation):
- Outer pole cover (graphite covered)
- Inner pole cover (graphite covered)
- HCA orifice (orifice sizing)
- HCA keeper (graphite)
- Inner and outer discharge chamfers (magnetic shielding)
Wear Test Objectives

Objective 2: Quantify performance trends over and extended period of TDU operation to identify unknown failure modes and support validation of service-life models

<table>
<thead>
<tr>
<th>Objective/metric</th>
<th>Category</th>
<th>Measurement</th>
<th>Measurement Method</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Operating Point</td>
<td>Primary</td>
<td>Thrust</td>
<td>Calibrated thrust stand</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow rate</td>
<td>Calibrated flow meters</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currents and Voltages</td>
<td>Calibrated shunts and probes</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thruster Telemetry (stability)</td>
<td>IVB sweep</td>
<td>At regular intervals</td>
</tr>
<tr>
<td>Ref. Operating Points</td>
<td>Primary</td>
<td>As with nominal point</td>
<td>As with nominal point</td>
<td>At regular intervals</td>
</tr>
<tr>
<td>Plume characterization</td>
<td>Primary</td>
<td>Ion current density</td>
<td>Faraday probe on probe arm</td>
<td>At regular intervals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ion energy distribution</td>
<td>RPA on probe arm</td>
<td>At regular intervals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electron Temp. & Plasma Pot.</td>
<td>Langmuir probe on probe arm</td>
<td>At regular intervals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charge-dependent current flux</td>
<td>ExB probe on probe arm</td>
<td>At regular intervals</td>
</tr>
<tr>
<td>Thermal trends</td>
<td>Primary</td>
<td>TDU component temps</td>
<td>Thermocouples</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>Anode and BN surface temps</td>
<td>IR camera</td>
<td>On demand</td>
</tr>
<tr>
<td>HCA emitter Temperature</td>
<td>Secondary</td>
<td>HCA orifice plate temperature</td>
<td>Thermocouple</td>
<td>Continuous</td>
</tr>
<tr>
<td>HCA insert health</td>
<td>Primary</td>
<td>Keeper IV trace for 3 mass flows</td>
<td>IV trace</td>
<td>At regular intervals</td>
</tr>
<tr>
<td>HCA plume mode onset</td>
<td>Secondary</td>
<td>A/C component of keeper voltage</td>
<td>IV trace</td>
<td>At regular intervals</td>
</tr>
<tr>
<td>TDU plume structure</td>
<td>Tertiary</td>
<td>Plume structure of Xe I and Xe II</td>
<td>Single-frequency images</td>
<td>On demand</td>
</tr>
</tbody>
</table>
Wear Test Objectives

Objective 3: Quantify deposition rate of back-sputtered facility material to identify the impact of deposition on thruster surfaces, to validate facility modeling, and to inform facility configuration for future tests.

<table>
<thead>
<tr>
<th>Objective/metric</th>
<th>Category</th>
<th>Measurement</th>
<th>Measurement Method</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back-sputter rate</td>
<td>Primary</td>
<td>Mass of back-sputtered deposition</td>
<td>QCM</td>
<td>Continuous</td>
</tr>
<tr>
<td>Back-sputter composition</td>
<td>Primary</td>
<td>Mass-spec of deposition</td>
<td>SEM / XDAS</td>
<td>Post-test</td>
</tr>
<tr>
<td>Impact of deposition</td>
<td>Primary</td>
<td>Resistance at voltage/temperature</td>
<td>“Meggering”</td>
<td>Periodic</td>
</tr>
<tr>
<td>Spatially resolved sputter yields</td>
<td>Secondary</td>
<td>Thickness and composition of BSM</td>
<td>Witness plates</td>
<td>Post test</td>
</tr>
</tbody>
</table>

- Three QCMs near thruster plane
- Monitor horizontal, vertical symmetry of deposition
- Modeling predicts uniform flux at thruster position

Long term diagnosis
- Ta foil coupons on sides of panel graphite nuts facing beam dump
- Multiple (24) locations
- Provide spatial (z, θ) resolution of total carbon deposition throughout tank

Objective 4: Provide guidance for future long-duration testing by identifying best practices and unknown issues associated with facility operation and configuration
The HERMeS Technology Demonstration Unit One (TDU-1) has reached the level of maturity where long-duration wear testing is required

- Extensive Performance Testing During 2015
 - Demonstrated Nominal Performance Goals
 - Incorporated a Series of Minor Design Modifications
 - Correlated with Detailed Plasma Modeling of the Near-Feld Plume

- Extensive Thermal and Structural Modeling Tied to Experimental Data

- High-confidence that a TDU-based design will meet ARRM thruster requirements

• All TDU-1 operation is in GRC’s Vacuum Facility Five (VF-5)
 – Configuration identical to that of 2015 TDU performance testing base pressure \(\sim 1 \cdot 10^{-7} \) Torr. Pressure near TDU \(\sim 4.4 \cdot 10^{-6} \) Torr (Xe)
• Operation on laboratory power supplies/power console
• Operation on laboratory Xe feed system
Graphite Installation

- Graphite paneling protects all surfaces downstream of thruster
- 10 degree and 30 degree angling of beam dump plates
- Aperture introduced for IR camera
- Beam dump can be biased as part of test-like-you-fly analysis/assessment
Wear Test Segments

<table>
<thead>
<tr>
<th>Test</th>
<th>Segment</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV (underway)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective particular to the Segment</td>
<td></td>
<td>Measure TDU performance with graphite pole covers</td>
<td>Measure erosion of graphite pole covers,</td>
<td>Measure erosion and performance with Al\textsubscript{2}O\textsubscript{3} pole covers</td>
<td>Measure erosion and performance over an extended period</td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Pole Cover Configuration</td>
<td>Graphite, no masks, for 100 h No cover for 22 h</td>
<td>Polished graphite with Mo masks</td>
<td>Alumina with alumina masks</td>
<td>Same pole cover as Segment II with graphite masks</td>
<td></td>
</tr>
<tr>
<td>Outer Pole Cover Configuration</td>
<td>Graphite, no masks, for 100 h No cover for 22 h</td>
<td>Same pole cover as segment I</td>
<td>Alumina with no masks</td>
<td>New, polished graphite with graphite masks</td>
<td></td>
</tr>
<tr>
<td>Electrical Configuration</td>
<td>Varied</td>
<td>Cathode-tied</td>
<td>Floating</td>
<td>Cathode-tied</td>
<td></td>
</tr>
<tr>
<td>Duration, h</td>
<td>122</td>
<td>246</td>
<td>360</td>
<td>~1272 (670 completed)</td>
<td></td>
</tr>
<tr>
<td>Time-on-HCA and BN at end of segment, h</td>
<td>122</td>
<td>368</td>
<td>728</td>
<td>~2000 (1398 completed)</td>
<td></td>
</tr>
</tbody>
</table>
Overview

• Configuration
 – Thruster body tied to cathode in segments I, II, and IV
 – Thruster body floated in segment III

• Wear Test Operating Point
 – 600 V, 12.5 kW
 – Magnetic field settings determined by performance characterization in Segment I

• Typical Values for Various Parameters (vary slightly with configuration)
 – Jb: 1.9 A (≡ 0 during segment III)
 – Jd peak-to-peak: 14 A
 – Vd peak-to-peak: 12 V
 – Vcg peak-to-peak: 30 V
Deposition on BN Discharge Channel

Magnetic shielding has yielded net deposition on BN channel—no evidence of BN erosion

- Deposition estimated to be ~ 1 μm after 728 h (measured < 1 μm for 360 h)
- Surface resistance measured at 35 Ω
- No change in thruster performance noted over first 50 h during coating

BN witness plates confirm QCM measurements are mostly carbon

Performance trends at 600 V, 12.5 kW

- Discharge current steady during wear testing
 - Manual flow control—no changes required
 - Variations observed are largely thermally-induced due to various restarts.
- Thrust also varies due to thermal drift, but is largely constant.
 - 3.4 % higher with graphite pole covers
- Total current also largely constant
 - Body current included in total current
Performance trends at 20.8 A

- Reference firing conditions measured periodically
 - Capture changes in performance for conditions other than the wear test operating point
- For 20.8 A, no changes observed in thrust with time for 300 V, 400 V, or 600 V operation.
- The slight improvement in performance at 600 V with graphite pole covers remains constant. No improvement at lower discharge voltages.
Assessment of Sputter Erosion

- Optical profilometry of inner front pole covers
 - Referenced to protected region under masks (Mo or Al₂O₃)
 - Two measurements at each radial location, each average over a bit
- Sputtered surface is textured, adds a few µm uncertainty
- Mo masks had Mo masks of their own
- Al₂O₃ masks were un-masked.
Sputter-erosion of graphite inner pole cover

- **Graphite:**
 - Erosion rate of 45 μm/kh
 - Maximize near edges
 - Nominal pole covers sufficient

- **Molybdenum:**
 - Maximum rate of 600 μm/kh
 - Appears to follow same trends...but doesn’t!

- **OES data suggest erosion increased between 20 and 75 h. Change in B-field at 20 h**
• Maximum Al_2O_3 rate of 135 μm/kh
 – Thick covers required to meet ARRM mission
• Fundamentally different erosion pattern
• OES data again suggest erosion was roughly constant (within uncertainty of measurement)
Correlation of inner pole cover erosion trends

- Ratio of Mo and Al\(_2\)O\(_3\) to graphite erosion rates
 - Intended to shed light on energy of sputtering ions
 - Reveals Mo and Al\(_2\)O\(_3\) are eroding in similar regards wrt graphite
 (Mo rates being roughly 3x Al\(_2\)O\(_3\) rates across the radius)
- Suggests erosion patterns are dominated by ions’ angles of incidence rather than energy levels. (Cf. Oyarzabal, AIAA-2005-3525)
 - Ions between 75 eV and 125 eV
 - 15 degree variation in angle of incidence
Other Components

- **Outer pole cover**
 - Possible erosion observed near outer radius of graphite outer pole cover (44 μm/kh). Lack of reference (thruster not removed from chamber) makes absolute measurements difficult.
 - No erosion observed on the alumina outer pole cover—but no deposition either....

- **Discharge cathode**
 - No erosion observed on cathode keeper or orifice plate after 728 h (removed for inspection before Segment IV).
 - No change in ignition or cathode-only behavior observed.
Summary

• Test Campaign
 – Three of four test segments completed
 • Extensive performance testing
 • Measurement of inner pole cover wear for two potential thruster configurations
 • Demonstration of magnetic shielding over extended operation
 – Segment IV underway incorporating lessons learned

• Component Wear
 – No BN channel erosion
 – Graphite pole cover erosion of 45 μm/kh yields < 50% of the volumetric erosion of alumina (including outer pole cover).
 – OES appears to yield real-time assessment of rates..

• TDU Performance
 – No variation in performance observed with thruster operating time
 – Performance gain associated with graphite (conducting) pole / cathode-tied configuration could be significant for long duration missions
Current Status

• Back-sputter characterization
 – Back sputter rates of 1.8 μm/kh measured by QCMs
 – No impact observed on thruster performance
 – Graphite paneling has significantly reduced back-sputter onto the thruster

• Data suggest best configuration
 – Graphite pole covers with body tied to cathode
 • Lower erosion
 • Better performance
 • Acceptably worse beam divergence and spread of higher energy ions
 – Segment IV initiated to identify unknown issues associated with this configuration over extended (> 1000 h) operation
 • Graphite covers, with body tied to cathode potential (cathode floats wrt ground)
 • 670 h to date
 • No variation in thruster performance.
 • No anomalies noted through external visual inspection