CFD-BASED DESIGN OF A FILMING INJECTOR FOR N+3 COMBUSTORS

Kumud Ajmani
Vantage Partners, LLC, Cleveland OH

Hukam C. Mongia
CSTI Associates, LLC, Yardley PA

Phil Lee
Woodward FST Inc, Zeeland MI

AIAA Propulsion and Energy Forum and Expo 2016
52nd AIAA/SAE/ASEE Joint Propulsion Conference
July 25-27 2016, Salt Lake City, UT, USA
Motivation for Current Work

• NASA’s N+3 (2030 target) Project Goals:
 – Reduce NOx emissions to 80% below ICAO CAEP6 standards
 – “smaller core-size” and “higher T3” as compared to N+2/ERA
 – Evaluate feasibility of drop-in alternate fuels

• Lean-Direct Injection (LDI) concepts being studied by OEMs and several injector manufacturers to reduce emissions

• Current work: Aerodynamic Design of 3rd generation LDI (LDI-3) Injection modules using the National Combustion Code (NCC)
Purpose of Current Work

• Use CFD analysis with the NCC to evaluate new, updated injector design(s) to meet NASA’s N+3 technology goals

• Impact aerodynamic design of LDI-3 Injection modules
 • Evaluate new Pilot and Main Injection Element design

• CFD predictions of LDI-3 injector performance and emissions
 – Evaluate filming fuel injection strategy for Main Injection Element
Why use NCC for LDI System Design?

M1 Simplex
M2 Airblast
M3 Airblast
P Simplex

17M element all-tetrahedral mesh
CFD Calibration Results from LDI-2 Data

EINOx for 5-pt Recess Configs 3, 7, 9, Baseline Config 10

NCC vs Experiment (EINOx)

NCC CFD Emissions Calibrated for a wide range of N+2 Cycle Operating Conditions
LDI-2 vs LDI-3 Injector Layout

- Large decrease in fuel-injection module complexity with LDI-3 while maintaining effective area of individual injectors
- Much denser packing of injectors at combustor dome face
- Higher reference velocity for LDI-3 due to smaller annulus/dome area of combustor
• Large decrease in fuel-injection module complexity with LDI-3 while maintaining effective area of individual injectors
LDI-3 Filming Injector for Main Elements

- Main Injector Air flows through axial bladed swirl venturis
- Two major airflow paths (co-swirling or counter-swirling)
- One center-jet air pathway provides high velocity jet for ‘control’
- Fuel fed tangentially into cross-flowing air-stream of inner air swirlers
Parametric Design Goals with NCC CFD

1. Maximize the total AC_d of the five-element array (Pilot and four Mains)

2. Provide an ‘optimal’ central recirculation downstream of the Pilot

3. Fuel-air mixing and burning in all injector elements to meet N+3 performance, emissions
Summary of National Combustion Code (NCC)

- Finite-Volume solutions of Time-dependent, Navier-Stokes equations
- 2-equation, k-ε turbulence models (non-linear, low-Re or wall-functions)
- Lagrangian spray-modeling with primary/secondary breakup and atomization options, multi-component fuels
- Reduced-kinetics, Finite-rate chemistry models
- RANS time-integration and/or VLES with Time-Filtered Navier-Stokes (TFNS) approach
Parametric I: LDI-3 Single Swirler Design

<table>
<thead>
<tr>
<th>Swirler Configuration</th>
<th>Expt</th>
<th>CFD</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52°/60° (OAS/IAS) co-rotating</td>
<td>0.137</td>
<td>0.1411</td>
<td>3.0</td>
</tr>
<tr>
<td>52°/60° (OAS/IAS) counter-rotating</td>
<td>0.134</td>
<td>0.1259</td>
<td>-1.1</td>
</tr>
<tr>
<td>48°/60° (OAS/IAS) counter-rotating</td>
<td>0.144</td>
<td>0.1467</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Single-Element Optimization
Single-Element Spray Optimization
Five-Element Module Design

• A central ‘Pilot’ element (pressure-atomizing injection) and four adjacent ‘Main’ elements (pre-filming injection)
• Four Main elements with CFD-optimized 48°/60° outer/inner counter-rotating axial air swirlers
• Central Pilot injector with multiple, radial inflow slots for airflow. Air inflow direction is 51% offset with respect to the injector centerline.
• Two rows of cooling holes on pilot venturi surface, with 18 and 24 cooling holes respectively
Five-Element Module CFD Setup
Non-Reacting Flow: RANS vs TFNS
Non-Reacting Flow: RANS vs TFNS

<table>
<thead>
<tr>
<th>Method</th>
<th>Total (in²)</th>
<th>Mains (in²)</th>
<th>Pilot (in²)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>0.720</td>
<td>0.575</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>NCC RANS</td>
<td>0.744</td>
<td>0.620</td>
<td>0.124</td>
<td>3.3</td>
</tr>
<tr>
<td>NCC TFNS</td>
<td>0.752</td>
<td>0.621</td>
<td>0.131</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Parametric II: LDI-3 Main Swirlers

48/60 OAS/IAS

Pilot | MAINS | MAINS | PILOT | MAINS | MAINS

45/60 OAS/IAS
Parametric III: LDI-3 Pilot Swirlers

AIAA Propulsion & Energy 2016
5-Element Module: Reacting Flow
5-Element Module: Reacting Flow

EINOx = 25

EINOx = 29
Effect of Turbulence-Chemistry Interaction (PDF)
Effect of Turbulence-Chemistry Interaction (PDF)

EINOx = 9

EINOx = 29
Summary and Future Work

• NCC CFD shown to be useful to narrow the design matrix for LDI-3 injector aerodynamic design (Main, Pilot Swirlers)

• NCC CFD shown to compare well with experimental data for filming injector spray particle distribution

• Proposed LDI-3 injector redesign improves on LDI-2 injector design with
 – Reduced number of injection elements
 – Reduced Complexity of fueling circuits
 – Better thermal management of fuel system

• Drawbacks of transverse fuel-injection approach (JPC 2015) successfully redesigned with filming-injection approach

• Turbulence-chemistry interaction approach shows large influence of temperature and emissions predictions
Summary and Conclusions

• NCC CFD shown to be useful to narrow the design matrix for LDI-3 injector aerodynamic design (Main, Pilot Swirlers)
• NCC CFD shown to compare well with experimental data for filming injector spray particle distribution
• Proposed LDI-3 injector redesign improves on LDI-2 injector design with
 – Reduced number of injection elements
 – Reduced Complexity of fueling circuits
 – Better thermal management of fuel system
• Drawbacks of transverse fuel-injection approach (JPC 2015) successfully redesigned with filming-injection approach
• Turbulence-chemistry interaction approach shows large influence of temperature and emissions predictions
Future Work

• NCC CFD to be used to evaluate 7-element module of 19-element configuration
• Evaluate NCC CFD turbulence-chemistry interaction models (PDF and LEM) with available LDI-2 experimental database for EINOx predictions
• Investigate sensitivity of CFD solution to spray specifications for modeling of filming injection in main swirlers
Acknowledgements

• Advanced Air Transport Technology (AATT) Project Office at NASA Glenn
• NAS Supercomputing Facility at NASA Ames