Persistent Platforms in Space – Next Generation Infrastructure

- Deep Space Gateway
- In Space Manufacturing
- In Space Robotic Manufacturing and Assembly

National Space Symposium
April 3, 2017
Colorado Springs, CO

R.G. Clinton Jr., PhD
Associate Director
Science and Technology Office
NASA Marshall Space Flight Center
Exploring Space In Partnership

Now
Using the International Space Station

2020s
Operating in the Lunar Vicinity

2030s
Leaving the Earth-Moon System and Reaching Mars Orbit

Phase 0
Solve exploration mission challenges through research and systems testing on the ISS. Understand if and when lunar resources are available

Phase 1
Conduct missions in cislunar space; assemble Deep Space Gateway and Deep Space Transport

Phase 2
Complete Deep Space Transport and conduct Mars verification mission

Phases 3 and 4
Missions to the Mars system, the surface of Mars
Deep-Space Habitation Development Strategy

Proving Ground Phase 0: SYSTEMS DEVELOPMENT AND TESTING ON ISS / LEO

- Bigelow Expandable Activity Module
- Spacecraft Fire Safety
- Human Research and Performance

Habitation System Projects

- Life Support Systems
- Exercise Systems
- Docking / berthing Systems
- Advanced Avionics
- EVA

Proving Ground Phase 1: DEEP SPACE TESTING

- Spaceport
- NextSTEP Habitation / Int. Partners

Proving Ground Phase 2: DEEP SPACE VALIDATION

- Spaceship

LEO COMMERCIALIZATION

Deep-Space Habitation Development Strategy
NextSTEP Habitation Overview

NextSTEP Phase 1: 2015-2016

- Partners develop required deliverables, including concept descriptions with concept of operations, NextSTEP Phase 2 proposals, and statements of work.

Cislunar habitation concepts that leverage commercialization plans for LEO

NextSTEP Phase 2: 2016-2018

- Partners refine concepts and develop ground prototypes.
- NASA leads standards and common interfaces development.

FIVE GROUND PROTOTYPES BY 2018

Initial discussions with international partners

Define reference habitat architecture in preparation for Phase 3.

Phase 3: 2018+

- Partnership and Acquisition approach, leveraging domestic and international capabilities
- Development of deep space habitation capabilities
- Deliverables: flight unit(s)
PHASE 2

Deep Space Gateway (DSG)

Deep Space Transport (DST)
In-Space Manufacturing (ISM) Path to Exploration

GROUND-BASED
- Earth-Based Platform
 - Certification & Inspection Process
 - Design Properties Database
 - Additive Manufacturing Automation
- Ground-based Technology Maturation & Demonstration
- AM for Exploration Support Systems (e.g. ECLSS) Design, Development & Test
- Additive Construction
- Regolith (Feedstock)

EARTH RELIANT ISS
- ISS Test-bed Platform
 - 3D Print Demo
 - Additive Manufacturing Facility
 - In-space Recycling
 - In-space Metals
 - Printable Electronics
 - Multi-material Fab Lab
 - In-line NDE
 - External Manufacturing
 - On-demand Parts Catalogue
 - Exploration Systems Demonstration and Operational Validation

PROVING GROUND Cis-lunar
- Planetary Surfaces Platform
 - Multi-materials Fab Lab (metals, polymers, automation, printable electronics)
 - Food/Medical Grade Polymer Printing & Recycling
 - Additive Construction Technologies
 - Regolith Materials – Feedstock
 - AM Exploration Systems

EARTH INDEPENDENT Mars
- Asteroids

Text Color Legend
- Foundational AM Technologies
- AM for Exploration Systems
<table>
<thead>
<tr>
<th>Archinaut</th>
<th>Dragonfly</th>
<th>CIRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Versatile In-Space Precision Manufacturing and Assembly System</td>
<td>On-Orbit Robotic Installation and Reconfiguration of Large Solid Radio Frequency (RF) Reflectors</td>
<td>A Commercial Infrastructure for Robotic Assembly and Services</td>
</tr>
</tbody>
</table>

Tipping Point Objective

<table>
<thead>
<tr>
<th>Archinaut</th>
<th>Dragonfly</th>
<th>CIRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ground demonstration of additive manufacturing of extended structures and assembly of those structures in a relevant space environment.</td>
<td>A ground demonstration of robotic assembly interfaces and additive manufacture of antenna support structures meeting EHF performance requirements.</td>
<td>A ground demonstration of reversible and repeatable robotic joining methods for mechanical and electrical connections feasible for multiple space assembly geometries.</td>
</tr>
</tbody>
</table>

Team

| Made In Space, Northrop Grumman Corp., Oceaneering Space Systems, Ames Research Center | Space Systems/Loral, Langley Research Center, Ames Research Center, Tethers Unlimited, MDA US & Brampton | Orbital ATK, Glenn Research Center, Langley Research Center, Naval Research Laboratory |
In-Space Manufacturing (ISM) Program Timeline

<table>
<thead>
<tr>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS 3DP Tech Demo</td>
<td>LAUNCH PH. 1</td>
<td>ISS OPS PH. 1</td>
<td>TESTING PH. 2</td>
<td>ISS OPS PH. 1</td>
<td>RESULTS</td>
<td>PH. 2 TEST</td>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
<td>ISS END</td>
</tr>
<tr>
<td>ISS Additive Manufacturing Facility (AMF)</td>
<td>DEVELOP & BUILD</td>
<td>ISS ULTEM PARTS</td>
<td>ISS COMMERCIAL & NASA UTILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXPLORATION SYSTEMS OPERATIONAL</td>
<td></td>
</tr>
<tr>
<td>In-Space Recycling</td>
<td>ISS DEMO PH. 1 SBIR</td>
<td>ISS DEMO PH. 2 SBIR</td>
<td>DESIGN, BUILD & GROUND DEMO</td>
<td>ISS FLIGHT CERT</td>
<td>LAUNCH FUBLAB TECHNOLOGY DEMONSTRATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISS Multi-Material FabLab Rack (Metallics, Polymers, etc.)</td>
<td>YET2 TECH SEARCH</td>
<td>RFI FUBLAB PH. 1</td>
<td>PH. B FUBLAB BAA</td>
<td>PH. C FUBLAB BAA</td>
<td>LAUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Space Metals Development</td>
<td>WOHLERS STUDY</td>
<td>MIS CASTING TASK</td>
<td>DESKTOP METALS</td>
<td>IN-SPACE METALS FUBLAB INFUSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printable Electronics</td>
<td>INK DEVELOPMENT</td>
<td>ISS RFID DESIGN & TEST</td>
<td>PH. 1 SBIR</td>
<td>PH. 2 SBIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration Systems Design Database & Component Testing</td>
<td>ISM EMC QUANTITATIVE BENEFIT ANALYSES</td>
<td>GROUND TEST EXPLORATION COMPONENTS (ECLSS, LR, Suits, CHSS, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Space Verification and Validation (In-process NDE)</td>
<td>UTILIZATION CATALOG DEVELOPMENT</td>
<td>ISM V&V DEVELOPMENT</td>
<td>IN-PROCESS NDE FUBLAB INFUSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISM enables the ‘Design for Maintainability’ approach Required for Sustainable Exploration missions.
Living in Space: Short Duration Habitation

Initial Cislunar Habitation
- Support crew each year for short duration stays in cislunar space
- Protect and support crew in deep space for up to 60 days
- Uncrewed operations during deployment and between uses
- Earth-independent operations

Common Capabilities
- 4 crew for short durations (up to 60 days)
- Support autonomous mission operations with time delay
- Common, partially closed ECLSS under approx. 800 kg (3 years MTBF and 2 crew per torr of CO₂ removal)
- Autonomous rendezvous, prox ops, and docking
- Ability to be teleoperated with <0.5 s latency
- Communications to/from Earth and between elements
- Common, lightweight pressure vessel and common hatch
- 15 year lifetime with long dormancy periods
- Design for maintainability

Excursion Vehicle
- Explore kilometers away from the destination habitat
- 2 crew for up to 2 weeks, contingency 4 crew for 1 week
- EVA pressure garment and PLSS <200 kg with dual-band radio avionics and radiation hardened bio-med sensors
- High frequency EVA (15 min. ingress-egress time)
- 4 years dormant before first use and between uses
- Design for reuse for 3 missions
- Lightweight exercise equipment under 25 kg

Mars Ascent Vehicle
- Return crew to Mars orbit
- 4 crew for up to 2.5 day crewed duration
- Open loop ECLSS under approx. 400 kg
- 5 years dormant before use

Mars Taxi
- Transport crew between Mars orbit and Mars moons
- 4 crew for up to 2.5 day crewed duration
- 560 days operational (uncrewed) at Mars
- 2 years dormant before use
- Up to 1.5 years dormant between uses

Logistics Module
- Logistics module to cislunar space
- Launched on either SLS and ELV launch vehicles
- Carries up to 5-10 t of pressurized logistics
- 10-15 t total mass
Living in Space: Long Duration Habitation

Challenges
- Protect and support crew in deep space for up to 1100 days
- Uncrewed operations during deployment and between uses
- Reduced logistics and spares
- Earth-independent operations

Common Capabilities
- 4 Crew for 500-1100 days
- Common pressure vessel
- 15 year lifetime with long dormancy periods
- Design for reusability across multiple missions
- 100 m³ habitable volume and dry mass < 22 t
- Autonomous vehicle health monitoring and repair
- Advanced Exploration ECLSS with >85% H₂O recovery and 50% O₂ recovery from reduced CO₂
- ECLSS System (w/o spares): <5 t mass, <9 m² volume, <4 kW power
- Environmental monitoring with >80% detection rate without sample return
- 14-kW peak operational power and thermal management required
- Autonomous mission operations with up to 24 minute one-way time delay
- Autonomous medical care, behavioral health countermeasures, and other physiological countermeasures to counteract long duration missions without crew abort
- Exercise equipment under 500 kg
- Provide 20-40 g/cm² of radiation protection
- EVA pressure garment and PLSS <200 kg
- Contingency EVA operations with 1 x 2-person EVA per month
- Communications to/from Earth and between elements

Mars Surface Habitat
- Live and operate on the Mars surface in 1/3 g
 - 4 crew for up to approx. 500 days
 - 48 m³ volume for logistics and spares
 - Logistics Mass: 10.7 t
 - 4 years dormant before use
 - 3-4 years dormant between uses
 - EVA system with surface mobility, dust mitigation, and atmospheric compatibility

Phobos Habitat
- Live and operate in microgravity at Phobos
 - 4 crew for up to approx. 500 days
 - 48 m³ volume for logistics and spares
 - Logistics Mass: 10.7 t
 - EVA system with Phobos mobility and dust mitigation
 - 4-5 years dormant before use
 - 3 years dormant between uses

Transit Habitat
- Live and operate in microgravity during trip to/from Mars
 - 4 crew for up to 1,100 days
 - 93 m³ volume for logistics and spares
 - Logistics Mass: 21 t
 - 4 years dormant before use and between uses