Extreme Environments Capabilities at Glenn Research Center

Venus and Beyond

Presented by: Jeff Balcerski
Tibor Kremic
Lori Arnett
Dan Vento
Leah Nakley

Glenn Research Center, Cleveland, OH
Extreme Environments Capabilities at Glenn Research Center

Venus and Beyond

1. Venus atmospheric and surface investigations
 - A (brief) introduction to GEER
 - GEER status
 - Upgrades in progress

2. Other extreme environments capabilities
Venus in a Bottle:
The Glenn Extreme Environment Rig (GEER)

Two facilities combined:

A. 10 ton pressure vessel
 • Certified to 100 bar at 500° C
 • Corrosion resistant 304 SS
 • Many user ports
 • ~ 1 m3 volume

B. Programmable gas bank
 • Configurable via visual interface
 • Controlled to PPM (or better)
 • 9 independent gas streams
GEER simulates atmospheres

Current capability

- Temperature: ambient to 500 degree C
- Virtually any chemistry – accurately
- Large physical size (3’ dia. x 4’ long inside)
- Pressure: .001 to 100 bar
- Indefinite duration

Science, technology and/or mission applications

Venus (environment and chemistry – surface to above clouds)
Saturn, Jupiter, Uranus, moons (chemistry and temp / pressure within rig limits)
Exoplanets – Chemistry for science and model inputs

Venus Flagship STDT Report
NRC 2013 Planetary Decadal Survey
Super-Earth exoplanet GJ 1214b (Image from ESA VLT)

Direct applications for ROSES science, instrument and technology development, Discovery, New Frontiers, and Flagship missions
Recent Accomplishments

- Over 90 days of operation at Venus surface conditions
- Extensive catalog of performance of engineering materials created
- Geological science investigation for atmosphere-surface interaction
- Successful operation of data feedthroughs
- Initial journal publications in preparation
New Capabilities and Upgrades in Progress

- General purpose interior probe
- Optical window
- Co-located mass spectrometer
- In-line gas chromatograph
- In-line FTIR
- Improved thermal control
- More precise control over gas injection
GEER available for users

• Science and engineering investigations
• GEER team will work with users to meet schedule and technical requirements and provide cost estimates
• Customization of vessel will require proposal-supplied funds
• All test runs are coordinated to maximize science and technical return
 – Can support several experiments at the same time
GEER available for users

- Customer interface document being finalized
- Website: https://geer.grc.nasa.gov/
- Primary contact is Dan Vento at: daniel.m.vento@nasa.gov

Currently seeking volunteers for science advisory board
contact Jeff Balcerski (jeffrey.balcerski@nasa.gov)
Extreme Environments at Glenn Research Center

Out of the Frying Pan… And Into the Freezer

Cryogenics Facilities at GRC

- Maintain 1×10^{-6} torr
- Liquid He, H$_2$, N$_2$, Ar, O$_2$, CH$_4$
- Can accommodate a 1.1 x 1.6 m test article
- Ascent profiling: 760 to 1×10^{-2} torr in 2 min.
- Programmable thermal shroud: 100 to 390 K to simulate diurnal cycles
- Can emulate conditions of Titan’s lakes
Cryogenics Facilities at GRC

Numerous pressure vessels ranging from 0.2 ft³ (0.006 m³) to 58 ft³ (1.6 m³) with pressures up to 500 psi (34.5 bar)

• Primary contact is Lori Arnett at: lori.arnett@nasa.gov
Backup Slides
Glenn Extreme Environment Rig (GEER) Specs

- 304SS vessel - 3’ dia x 4’ long inside dimensions (28.3 ft³ or .8 m³)
- Max conditions pressure 103 bar at 500 degree C
- Eight ports - including a couple at opposing ends
- Nine separate gas streams
 - Each of these can handle pure or mixed gases
 - Ppm accuracy or better
- Re-boost pumping system
- Supporting infrastructure sized to handle multiple or a much larger chamber if ever needed
- Currently verify chemistry through mass spectroscopy (regular sample)

Tested with predicted chemistry near Venus surface

<table>
<thead>
<tr>
<th>Gas</th>
<th>Moles</th>
<th>Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>1237.1107</td>
<td>54445.24191</td>
</tr>
<tr>
<td>N₂</td>
<td>44.8693</td>
<td>1256.96857</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.2307564</td>
<td>14.782255</td>
</tr>
<tr>
<td>HCl</td>
<td>0.00051279</td>
<td>0.0186954</td>
</tr>
<tr>
<td>HF</td>
<td>0.00006409</td>
<td>0.001282</td>
</tr>
<tr>
<td>OCS</td>
<td>0.00564071</td>
<td>0.338843</td>
</tr>
<tr>
<td>CO</td>
<td>0.02948554</td>
<td>0.825919</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.0384594</td>
<td>0.692885</td>
</tr>
</tbody>
</table>

Operating Details

- Temperature ramp rate 7 degree C /hour
- Average temperature controlled to 1 degree C
- Pressure can be boosted
- Large volume may offer opportunity to explore stratification