National Aeronautics and Space Administration

Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

March 7, 2017, IEEE Aerospace Conference

Tara Polsgrove

Herbert D. Thomas, Alicia Dwyer Cianciolo, Tim Collins, Jamshid Samareh
Introduction

- This paper explores the impact of human Mars mission architecture decisions on the design and performance of a lander using the HIAD entry system.
 - Earth departure options
 - Mars arrival options
 - Entry Descent and Landing options

Related papers at this conference

- “Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations” – Randy Lillard

- “Human Mars Mission Design Study Utilizing the Adaptive Deployable Entry and Placement Technology” – Alan Cassell

- “Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures” – Sharon Jefferies
Entry Technologies

Inflatable
HIAD – Hypersonic Inflatable Aerodynamic Decelerator

Deployable
ADEPT – Adaptable Deployable Entry and Placement Technology

Mid L/D
Rigid Structure

Capsule Concept

NASA is studying 4 entry system technologies for human missions. This paper is focused on the HIAD option.
HIAD Lander

- **Cargo**
 - Ascent vehicle, habitats, etc.

- **Mars Descent Module (MDM)**

- **Entry System**
 - Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
There are several in-space propulsion options for delivering cargo to Mars. Solar electric, chemical, and nuclear thermal have been studied.

Solar Electric Propulsion offers 2 unique opportunities

- Single launch of lander and propulsion to Mars
 - Uses SEP one-way to Mars.
 - Spiral escape from high Earth orbit

- Reusable Earth to Mars transportation
 - SEP + chemical hybrid vehicle
 - Cislunar aggregation
Earth Departure Options

Packaging in SLS 10m Fairing

Single Launch SEP + Lander

Lander only launch
Then rendezvous with reusable SEP hybrid for transit to Mars

Lander and SEP co-manifested results in greater lander structural mass due to challenge of meeting 5 Hz lat. stiffness goal
Earth Departure Options

- SLS launch fairing diameters of 10m and 8.4m have been studied.
- 3 of 4 entry system technologies are not likely to be feasible at 8.4m.
- 8.4m fairing challenges mitigated by increasing lander mass and overall architecture risk;
 - Structures,
 - landing gear design,
 - stability during entry,
 - aft body heating.
- More landers needed to deliver the same payload.
- See paper on this topic.
Mars Arrival Options

- Two options for Mars orbit capture were studied
 - Aerocapture into a 1 Sol orbit, loiter ≤ 1yr, deorbit duration ~12hrs
 - Propulsive Capture using SEP Hybrid into 5 Sol orbit, loiter ≤ 1yr, deorbit duration ~2.5 days

Deorbit from 5 Sol may increase risk of unfavorable landing weather
Aerocapture cases use a 2nd HIAD system to mitigate risk of long exposure during Mars loiter prior to entry.
Entry Descent and Landing Options

• Sensitivity to payload mass
 – The greater the payload capability of each lander the fewer number of landers are needed.
 • 4 landers are required with 20mt capability, 3 with 27mt
 – Smaller payload capability results in lighter landers, easier payload packaging and minimum required SEP power levels
 – Payload capability is driven by MAV
 • Ascent to high Mars orbit (1Sol-5Sol) is desired for rendezvous with Earth return vehicle
 • Reliance on ISRU LOX production significantly reduces necessary MAV landed mass (MR > 3 for lox methane)

Total Lander Mass (t) = 1.51(payload) + 23.5
Aerocapture = 1.43(payload) + 18
Propulsive delivery to 5 Sol
Entry Descent and Landing Options

- **Propulsion Options: Lox/methane vs storable MMH/NTO (both assume pump fed main engines)**
 - Common propulsion technology is assumed for descent and ascent to minimize investments across the architecture
 - Lox/methane + ISRU allows for MAVs to reach high Mars orbits while minimizing landed mass to 20mt
 - A storable solution eliminates technology investment in long duration cryofluid management and offers greater packaging density for both descent and ascent stages
 - Storable option must deliver more payload because ISRU MAV propellant production is no longer an option
 - To minimize lander payload delivery requirement, the storable MAV is limited to ascent to a low Mars orbit and the cabin size is minimized to reflect 8-12hr habitation.
 - Requires a new vehicle, Mars orbit taxi, to complete ascent and rendezvous with Earth return vehicle.
Results

<table>
<thead>
<tr>
<th>Component</th>
<th>Aerocapture to 1 sol Parking Orbit SEP/Chem Split Options</th>
<th>Propulsive delivery to 5 sol Parking Orbit SEP/Chem Hybrid Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27 t LOX/Methane 20 t LOX/Methane NTO/MMH</td>
<td>27 t LOX/Methane 20 t LOX/Methane NTO/MMH</td>
</tr>
<tr>
<td>Structures</td>
<td>5442 4961 4961</td>
<td>4652 4253 4136</td>
</tr>
<tr>
<td>Propulsion</td>
<td>5310 4899 5206</td>
<td>5260 4842 5189</td>
</tr>
<tr>
<td>Power</td>
<td>1437 1217 1575</td>
<td>1437 1437 1575</td>
</tr>
<tr>
<td>C&DH</td>
<td>136 136 136</td>
<td>136 136 136</td>
</tr>
<tr>
<td>C&T</td>
<td>76 76 76</td>
<td>76 76 76</td>
</tr>
<tr>
<td>GNC</td>
<td>116 116 116</td>
<td>116 116 116</td>
</tr>
<tr>
<td>Thermal</td>
<td>357 328 573</td>
<td>357 328 573</td>
</tr>
<tr>
<td>Decelerator</td>
<td>9444 9444 9444</td>
<td>4185 4185 4185</td>
</tr>
<tr>
<td>Dry Mass</td>
<td>22,318 21,177 22,087</td>
<td>16,219 15,373 15,986</td>
</tr>
<tr>
<td>Cargo</td>
<td>27,000 20,000 23,881</td>
<td>27,000 20,000 24,187</td>
</tr>
<tr>
<td>Non-prop Fluids</td>
<td>851 848 951</td>
<td>850 843 920</td>
</tr>
<tr>
<td>Inert Mass</td>
<td>50,168 42,025 46,919</td>
<td>44,068 36,216 41,093</td>
</tr>
<tr>
<td>Used Propellant</td>
<td>14,093 11,668 12,289</td>
<td>12,519 10,367 11,497</td>
</tr>
<tr>
<td>Total Wet Mass</td>
<td>64,261 53,693 59,208</td>
<td>56,587 46,583 52,590</td>
</tr>
</tbody>
</table>
Parametric mass models are in development for all four entry system technologies considered. Models are anchored by point designs generated by multidisciplinary team.
Conclusions

• Landers can be launched alone or co-manifested with SEP stages. However in either case a 10m fairing diameter is desired.

• Dual HIADs are assumed for aerocapture options. A single dual use HIAD may be possible but further testing is required.

• Lox/methane propulsion + ISRU allows for direct ascent to high Mars orbit, while keeping lander payload delivery requirement small.

• Storable propulsion options are heavier, require another vehicle to complete ascent, but eliminate need for CFM technology investments.

• The HIAD-based Mars lander can accommodate a variety of architecture options.