NTP CERMET Fuel Development Status

Marvin W. Barnes¹

¹Metals Engineering Division,
NASA Marshall Space Flight Center

Nuclear and Emerging Technologies for Space (NETS) 2017 Orlando, FL
NTP CERMET FUEL DEVELOPMENT
• GE710 Program
• NTP CERMET Fuel Development

CERMET FABRICATION USING TUNGSTEN POWDER COATING AND SPARK PLASMA SINTERING
• Background
• Tungsten Powder Coating
• Spark Plasma Sintering
• Experimental Approach
• Results
• Conclusions
GE710 Program

• Extensive CERMET fuel development program
 – Over 15 million invested from May 1962 to Sept 1968
 – Operated fuel element fabrication line for reactor-sized fuel elements
 – Successfully fabricated 40+ W-60vol%UO₂ fuel elements for qual testing
 • Conducted over 300,000 hours of qualification testing

• 710 fabrication approach
 – Press and sinter W-UO₂ compacts
 – Machine cooling channels
 – Stack compacts
 – Weld tubes for cooling
 – Weld external cladding
NTP CERMET Fuel Development

- Hybrid GE710 Approach
 - GE710 approach with modern fabrication processes
 - Spark Plasma Sintering
 - Tungsten Powder Coating

- FY16 Development Efforts
 - Fabricated W-dUO₂ compacts using Spark Plasma Sintering and Tungsten Powder Coating
 - Phase I SBIR – Bonding tungsten CERMET compacts
 - Phase I SBIR - Electrolytic method for tungsten coating

NTP CERMET Fuel Development

- **FY17 Development Efforts**
 - Developing process to fabricate subscale surrogate elements from compacts
 - Optimizing compact fuel element environmental testing (CFEET) apparatus
 - Initiating multiscale modeling task
 - Tungsten electron beam welding study

- **FY18 Planning**
 - SPS fabricate compacts with particles provided by BWXT
 - Hot hydrogen screening of W-dUO$_2$ compacts and subscale fuel segments
CERMET Fabrication using Tungsten Powder Coating and Spark Plasma Sintering

Marvin W. Barnes¹, Dr. Dennis Tucker¹, Lance Hone² and Steven Cook²

¹Metals Engineering Division, NASA Marshall Space Flight Center
²Center for Space Nuclear Research

Nuclear and Emerging Technologies for Space (NETS) 2017 Orlando, FL
Background

- Past efforts focused on consolidating blended tungsten powder and uncoated dUO$_2$ particles
 - Poor quality feedstock
 - Large particle size distribution
 - Non-spherical particles - agglomeration
 - Need for coated particles
 - Particle segregation/non-uniform distribution of UO$_2$ within W matrix
 - Low density/ partial consolidation
 - Fuel element distortion
 - Explored CVD coating
 - Complex process due to the need to fluidize particles

- Developed W powder coating
 - Non compatible with past consolidation methods
 - Led to SPS

- Small amount of CIF funding augmented by NTP Project
Tungsten Powder Coating

- Straightforward approach to particle coating
- Conducted experiments with 6 different organic binders
- Coating Process
 - Blend W powder, dUO$_2$ particles, and binder
 - Stir mixture above binder drop point on hot plate for 5 min
- Not as uniformly coated as CVD coated particles

Spark Plasma Sintering

- Rapid Consolidation/Sintering
- Net-shape/Near Net-Shape Parts
- High Density Parts
- Simple Process

1. Pictures courtesy of UC Davis and Substech
Experimental Approach

• Utilized SPS system at CSNR to sinter W/\(\text{UO}_2 \) samples
 – Used W powder coated particles
• Sintered 24 samples at 1600\(^\circ\)C, 1700\(^\circ\)C, 1750\(^\circ\)C, 1800\(^\circ\)C, and 1850\(^\circ\)C peak temperatures
• 20-minute dwell time at peak temperatures; Pressure of 50 MPa
• Measured density and SEM
• TEM, hardness, and further SEM planned
• CFEET testing planned
Results

- **Density**
 - Increased with peak sintering temperature
 - Near theoretical density

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Thickness (mm)</th>
<th>Diameter (mm)</th>
<th>Average Density (g/cm³)</th>
<th>Percent of Theoretical (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-SPS-1850C-001</td>
<td>5.90</td>
<td>19.93</td>
<td>14.2</td>
<td>99.5</td>
</tr>
<tr>
<td>1800C-001</td>
<td>5.45</td>
<td>19.95</td>
<td>14.1</td>
<td>98.5</td>
</tr>
<tr>
<td>1800C-002</td>
<td>5.94</td>
<td>19.96</td>
<td>14.1</td>
<td>98.6</td>
</tr>
<tr>
<td>1800C-003</td>
<td>5.57</td>
<td>19.91</td>
<td>14.1</td>
<td>98.5</td>
</tr>
<tr>
<td>1800C-004</td>
<td>6.03</td>
<td>19.91</td>
<td>14.0</td>
<td>98.3</td>
</tr>
<tr>
<td>1800C-005</td>
<td>5.60</td>
<td>19.93</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1750C-001</td>
<td>6.10</td>
<td>19.89</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1750C-002</td>
<td>6.15</td>
<td>19.90</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1750C-003</td>
<td>5.60</td>
<td>19.96</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1750C-004</td>
<td>5.70</td>
<td>19.90</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1700C-001</td>
<td>6.00</td>
<td>19.90</td>
<td>14.0</td>
<td>98.1</td>
</tr>
<tr>
<td>1700C-002</td>
<td>6.40</td>
<td>19.93</td>
<td>14.0</td>
<td>98.1</td>
</tr>
<tr>
<td>1700C-003</td>
<td>5.93</td>
<td>19.90</td>
<td>13.9</td>
<td>97.6</td>
</tr>
<tr>
<td>1700C-004</td>
<td>6.00</td>
<td>19.96</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1600C-001</td>
<td>6.10</td>
<td>19.90</td>
<td>13.9</td>
<td>97.2</td>
</tr>
</tbody>
</table>

Results

- Density

Max Temp vs % Theoretical Density

- A graph showing the relationship between Max Temp (°C) and % of Theoretical Density.
- The data points indicate an increasing trend as Max Temp increases.
Results

• SEM
 – Improved microstructure
 – UO₂ particles more uniformly dispersed
 – Cross-section depicts some particle elongation

Results

- Energy-dispersive X-ray spectroscopy (EDS)
 - No unexpected phases
Conclusions

• Improved mechanical properties and microstructure
• Further characterization needed and planned
 – Mechanical Properties
 – Thermal Properties
 – Chemistry
• Develop process to form elements from compacts
 – Stacking
 – Bonding
 – Cooling channel formation
 – Cladding