NTP CERMET Fuel Development Status

Marvin W. Barnes

1Metals Engineering Division, NASA Marshall Space Flight Center

Nuclear and Emerging Technologies for Space (NETS) 2017 Orlando, FL
Presentation Overview

NTP CERMEN FUEL DEVELOPMENT
• GE710 Program
• NTP CERMET Fuel Development

CERMET FABRICATION USING TUNGSTEN POWDER COATING AND SPARK PLASMA SINTERING
• Background
• Tungsten Powder Coating
• Spark Plasma Sintering
• Experimental Approach
• Results
• Conclusions
GE710 Program

• Extensive CERMET fuel development program
 – Over 15 million invested from May 1962 to Sept 1968
 – Operated fuel element fabrication line for reactor-sized fuel elements
 – Successfully fabricated 40+ W-60vol%\(\text{UO}_2\) fuel elements for qual testing
 • Conducted over 300,000 hours of qualification testing

• 710 fabrication approach
 – Press and sinter W-\(\text{UO}_2\) compacts
 – Machine cooling channels
 – Stack compacts
 – Weld tubes for cooling
 – Weld external cladding
NTP CERMET Fuel Development

- Hybrid GE710 Approach
 - GE710 approach with modern fabrication processes
 - Spark Plasma Sintering
 - Tungsten Powder Coating

- FY16 Development Efforts
 - Fabricated W-dUO$_2$ compacts using Spark Plasma Sintering and Tungsten Powder Coating
 - Phase I SBIR – Bonding tungsten CERMET compacts
 - Phase I SBIR - Electrolytic method for tungsten coating
NTP CERMET Fuel Development

• FY17 Development Efforts
 – Developing process to fabricate subscale surrogate elements from compacts
 – Optimizing compact fuel element environmental testing (CFEET) apparatus
 – Initiating multiscale modeling task
 – Tungsten electron beam welding study

• FY18 Planning
 – SPS fabricate compacts with particles provided by BWXT
 – Hot hydrogen screening of W-dUO$_2$ compacts and subscale fuel segments
CERMET Fabrication using Tungsten Powder Coating and Spark Plasma Sintering

Marvin W. Barnes¹, Dr. Dennis Tucker¹, Lance Hone² and Steven Cook²

¹Metals Engineering Division, NASA Marshall Space Flight Center
²Center for Space Nuclear Research

Nuclear and Emerging Technologies for Space (NETS) 2017 Orlando, FL
Background

• Past efforts focused on consolidating blended tungsten powder and uncoated dUO₂ particles
 – Poor quality feedstock
 • Large particle size distribution
 • Non-spherical particles - agglomeration
 • Need for coated particles
 – Particle segregation/non-uniform distribution of UO₂ within W matrix
 – Low density/partial consolidation
 – Fuel element distortion
 – Explored CVD coating
 • Complex process due to the need to fluidize particles

• Developed W powder coating
 – Non compatible with past consolidation methods
 – Led to SPS

• Small amount of CIF funding augmented by NTP Project

Tungsten Powder Coating

• Straightforward approach to particle coating
• Conducted experiments with 6 different organic binders
• Coating Process
 – Blend W powder, dUO₂ particles, and binder
 – Stir mixture above binder drop point on hot plate for 5 min
• Not as uniformly coated as CVD coated particles

Spark Plasma Sintering

- Rapid Consolidation/Sintering
- Net-shape/Near Net-Shape Parts
- High Density Parts
- Simple Process

1. Pictures courtesy of UC Davis and Substech
Experimental Approach

• Utilized SPS system at CSNR to sinter W/UO$_2$ samples
 – Used W powder coated particles
• Sintered 24 samples at 1600C, 1700C, 1750C, 1800C, and 1850C peak temperatures
• 20-minute dwell time at peak temperatures; Pressure of 50 MPa
• Measured density and SEM
• TEM, hardness, and further SEM planned
• CFEET testing planned
Results

- Density
 - Increased with peak sintering temperature
 - Near theoretical density

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Thickness (mm)</th>
<th>Diameter (mm)</th>
<th>Average Density (g/cm³)</th>
<th>Percent of Theoretical (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-SPS-1850C-001</td>
<td>5.90</td>
<td>19.93</td>
<td>14.2</td>
<td>99.5</td>
</tr>
<tr>
<td>1800C-001</td>
<td>5.45</td>
<td>19.95</td>
<td>14.1</td>
<td>98.5</td>
</tr>
<tr>
<td>1800C-002</td>
<td>5.94</td>
<td>19.96</td>
<td>14.1</td>
<td>98.6</td>
</tr>
<tr>
<td>1800C-003</td>
<td>5.57</td>
<td>19.91</td>
<td>14.1</td>
<td>98.5</td>
</tr>
<tr>
<td>1800C-004</td>
<td>6.03</td>
<td>19.91</td>
<td>14.0</td>
<td>98.3</td>
</tr>
<tr>
<td>1800C-005</td>
<td>5.60</td>
<td>19.93</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1750C-001</td>
<td>6.10</td>
<td>19.89</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1750C-002</td>
<td>6.15</td>
<td>19.90</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1750C-003</td>
<td>5.60</td>
<td>19.96</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1750C-004</td>
<td>5.70</td>
<td>19.90</td>
<td>14.1</td>
<td>98.7</td>
</tr>
<tr>
<td>1700C-001</td>
<td>6.00</td>
<td>19.90</td>
<td>14.0</td>
<td>98.1</td>
</tr>
<tr>
<td>1700C-002</td>
<td>6.40</td>
<td>19.93</td>
<td>14.0</td>
<td>98.1</td>
</tr>
<tr>
<td>1700C-003</td>
<td>5.93</td>
<td>19.90</td>
<td>13.9</td>
<td>97.6</td>
</tr>
<tr>
<td>1700C-004</td>
<td>6.00</td>
<td>19.96</td>
<td>14.0</td>
<td>98.2</td>
</tr>
<tr>
<td>1600C-001</td>
<td>6.10</td>
<td>19.90</td>
<td>13.9</td>
<td>97.2</td>
</tr>
</tbody>
</table>

Results

- Density

Max Temp vs % Theoretical Density

![Graph showing the relationship between max temperature (°C) and % of theoretical density. The graph has a line of best fit and several data points.](image)
Results

• SEM
 – Improved microstructure
 – UO$_2$ particles more uniformly dispersed
 – Cross-section depicts some particle elongation

Results

- Energy-dispersive X-ray spectroscopy (EDS)
 - No unexpected phases
Conclusions

• Improved mechanical properties and microstructure
• Further characterization needed and planned
 – Mechanical Properties
 – Thermal Properties
 – Chemistry
• Develop process to form elements from compacts
 – Stacking
 – Bonding
 – Cooling channel formation
 – Cladding