Experiments demonstrate COPV has capacity to withstand hypervelocity impact.

Failure mode appears to be related to impact energy.

A numerical model was designed to broaden the scope of this effort.

Pressurizing of COPV in numerical impact simulations will be the next effort.

References

Experimental and Modeling Results

- **HitF16163, Pressurized test, Pass**
- **HitF16169, Pressurized test, Venting failure**
- **HitF16162, Pressurized test, Rupture failure**
- **HitF16212, Unpressurized test, Pass**
- **HitF16394, Unpressurized test, Perforation**
- **HitF16211, Unpressurized test, Perforation**

Model

<table>
<thead>
<tr>
<th>Material</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOS</td>
<td></td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Mie-Grüneisen analytic</td>
</tr>
<tr>
<td>Composite overlap</td>
<td>Mie-Grüneisen, user option</td>
</tr>
<tr>
<td>Aluminum projectile</td>
<td>S планетарный</td>
</tr>
</tbody>
</table>

Conclusions

- Experiments demonstrate COPV has capacity to withstand hypervelocity impact.
- Failure mode appears to be related to impact energy.
- A numerical model was designed to broaden the scope of this effort.
- Pressurizing of COPV in numerical impact simulations will be the next effort.