In-Flight Calibration of the MMS Fluxgate Magnetometers

6th Magnetometer Workshop
Insel Vilm, Germany
UCLA

K. R. Bromund¹, F. Plaschke², R. J. Strangeway³, B. J. Anderson⁴, B. G. Huang¹, W. Magnes², D. Fischer², R. Nakamura², H. K. Leinweber³, C. T. Russell³, W. Baumjohann², M. Chutter⁵, R. B. Torbert⁵, G. Le¹, J. A. Slavin⁵, E. L. Kepko¹

Wednesday, April 19, 2017

¹NASA/GSFC, ²IWF/Austria, ³UCLA, ⁴Applied Physics Laboratory, ⁵University of Michigan Ann Arbor
Background

• The Magnetospheric Multiscale Mission (MMS) consists of 4 satellites, each with an identical Fluxgate Magnetometer (FGM) instrument suite consisting of an Analog Fluxgate (AFG) and a Digital Fluxgate (DFG). All 8 magnetometers were successfully deployed by 17 March 2015.

• Detailed and accurate ground calibrations were performed for each magnetometer.

• In order to meet mission goals, in-flight calibrations are necessary to evaluate and track changes in offset, alignment, gain and orthogonality.

• In addition, calibrated magnetometer data is necessary for instrument suite operations as well as ground data processing for other instruments.

• The calibration effort for the MMS Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions:
 – University of California, Los Angeles (UCLA)
 – Space Research Institute, Graz, Austria (IWF)
 – NASA Goddard Space Flight Center (GSFC)

• This presentation will focus on the calibration effort at GSFC.
MMS Mission Requirements and Goals for FGM

• Shall provide science quality FGM data (Level 2) within 30 days of data downlink.

• Mission goals for Level 2 FGM accuracy
 – Absolute accuracy: 0.3 nT.
 – Relative accuracy between spacecraft: 0.1 nT.
 – High relative accuracy between spacecraft is needed to assure accurate measurements of electric current density using curlometer.

• Provide preliminary calibrated magnetometer data (L2pre) for instrument suite operations and ground data processing within 2 weeks of data downlink.
Fundamentals of In-flight Calibration

• The calibration fundamentally consists of 12 parameters (e.g. 9 matrix elements and 3 offsets)
 – Offset, orthogonalization, alignment, and gain
 – Each instrument (AFG and DFG) has two ranges (Low-field and High-field), each of which has its own set of 12 parameters.
 – Total of 24 parameters for each instrument.

• Full determination of all parameters requires application of different calibration methods
 – Orthogonalization
 – Spin-axis offset from EDI
 – Earth Field Comparison
 – Range Joining and Instrument cross-calibration

• Each method has an effect on some subset of the 24 parameters for each instrument.
Leveraging the Ground Calibrations

• Ground calibrations, performed largely at TUBS, provide measurements that are difficult, if not impossible to measure more accurately in space:
 – Temperature-dependence of gain
 – Non-linearity of gain

• These calibrations are applied to all data as the first step of data processing.
 – In-flight \textit{gain} parameters thus indicate a delta relative to the ground calibration
 – Ground calibrations provide initial values for most other parameters, which may be compared to the in-flight calibration results.
Temperature-Dependence of Gain

\[B_{123\text{temp}} = B_{123} \cdot (g + m_s \cdot T_s) \cdot (1 + m_e \cdot (T_e - T_{ec})) \]

where

- \(B_{123\text{temp}} \): temperature and gain pre-calibrated B123 data (3 element vector time series)
- \(B_{123} \): L1A data in pseudo-nT (3 element vector time series)
- \(g \): ground based gain delta factor relative to pseudo-nT preliminary calibration (3 element vector)
- \(m_s \): ground based temperature delta factor relative to pseudo-nT preliminary calibration (3 element vector)
- \(T_s \): onboard sensor temperature (scalar time series)
- \(m_e \): electronics temperature coefficient from ground calibration (3 element vector)
- \(T_e \): onboard electronics temperature (scalar time series)
- \(T_{ec} \): reference temperature of electronics from ground calibration (scalar)
$B_{123\omicron} = \sigma_1 \cdot B_{123\omicron} + \sigma_2 \cdot B_{123\omicron}^2 + \sigma_3 \cdot B_{123\omicron}^3$

Note: no correction is applied for AFG, hence,
$\sigma_1 = 1.0$, except for DFG High range.
$\sigma_2, \sigma_3 = 0.0$, except for DFG High range.
FGM Approach to In-flight Calibration

- The in-flight calibration is performed after the ground calibrations have been applied to the gains, so all gains are referred to as ‘delta-gains’.
- A method developed at IWF modifies the standard calibration equation to optimize physical parameters independently rather than in a joint way.
 - Allows keeping parameters constant that may be considered “fixed” – at least in comparison to others.
 - Allows, e.g. keeping sensor orthogonality constant during maneuvers that affect the spin axis orientation, by treating the latter as pure rotations.
- In-flight calibration parameters are separated into the following categories:
 - Offset subtraction
 - Relative delta-Gain of spin plane sensors.
 - Absolute delta-gain of spin plane and spin axis.
 - Orthogonalization of the sensor triad
 - Alignment to spin axis
 - Absolute phase correction.
Orthogonalizing the Sensor Triad; Applying Gains and Offsets

Orthogonalization: referenced to spin-axis sensor

\[
B_{ORTHO} = \left(\begin{array}{ccc}
\sin \theta_1 & 0 & \cos \theta_1 \\
\cos \phi_{12} \sin \theta_2 & \sin \phi_{12} \sin \theta_2 & \cos \theta_2
\end{array} \right)^{-1} \cdot \left(\begin{array}{ccc}
dg_{SP_abs} & 0 & 0 \\
0 & dg_{SP_abs} & 0 \\
0 & 0 & dg_{SA_abs}
\end{array} \right) \cdot \left(\begin{array}{ccc}
dg_{SP} & 0 & 0 \\
0 & 1/dg_{SP} & 0 \\
0 & 0 & 1
\end{array} \right) \cdot \left(\begin{array}{c}
B_{1\text{precal}} \\
B_{2\text{precal}} - O_2 \\
B_{3\text{precal}} - O_3
\end{array} \right)
\]

where we use 9 parameters:

- \(\theta_1, \theta_2 \) elevation angles of axis 1 and 2 in respect to axis 3 (scalar)
- \(\phi_{12} \) angle between axis 1 and 2 (scalar)
- \(dg_{SP_abs} \) absolute delta-gain of spin plane (scalar)
- \(dg_{SA_abs} \) absolute delta-gain of spin axis (scalar)
- \(dg_{SP} \) relative delta-gain between axis 1 and axis 2 (scalar)
- \(O_1, O_2 \) spin plane offsets
- \(O_3 \) spin axis offset

To yield the result:

\(B_{ORTHO} \) orthogonalized B field data
Aligning the Sensor Triad

Alignment to spin-axis via solid-body rotation

\[s_x, s_y \] The X and Y components of the spin-axis sensor, with respect to Spin-Aligned (SA) Sensor Coordinates.

SA coordinates
X-axis To a good approximation, ORTHO X-axis is in the SA X-Z plane.
Z-axis Aligned with the major principal axis of inertia (MPA).

Absolute Phase Correction

\[\varphi_{abs} \] absolute rotation around spin axis

OMB Coordinates
X-axis Defined by the nominal AFG boom coordinates. AFG X-axis is in the OMB X-Z plane.
Y-axis Completes Right-handed system
Z-axis Aligned with MPA
Team Approach to In-flight Calibration

• A benefit of the IWF arrangement of the calibration equation is that it yields parameters for the in-flight calibration parameters which can be ‘owned’ by a single optimization process.
 – In contrast, for example, when using a coupling matrix, each element may be affected by Orthogonalization, Earth Field Comparison, Range Joining, etc.
 – Full responsibility for a subset of parameters is delegated to each of the teams, according to the calibration methods they will employ.

• The order in which the in-flight calibration methods are applied is determined by
 – The probability of change for a given parameter.
 – Required integration time and need for “look-ahead”.

• The final result can be clearly understood in terms of the contributions of each of the teams and their respective calibration methods.
Mapping Parameters to Calibration Processes, Calibration Processes to Institutions

<table>
<thead>
<tr>
<th>Calibration Process</th>
<th>Parameter Names</th>
<th>Physical Methods Used</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low field range</td>
<td>High Field Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spin plane offsets</td>
<td>01, 02</td>
<td>Minimize spectral power at ω_{spin} in the spin plane.</td>
<td></td>
</tr>
<tr>
<td>spin plane gain differential and non-orthogonality</td>
<td>dg_SP ϕ_{12}</td>
<td>Minimize spectral power at $2\omega_{\text{spin}}$ in the spin plane.</td>
<td>GSFC</td>
</tr>
<tr>
<td>elevation angles of spin plane sensors</td>
<td>θ_1, θ_2</td>
<td>Minimize slope of regression between apparent spin-plane sensor offset and the spin-axis field.</td>
<td></td>
</tr>
<tr>
<td>spin axis alignment</td>
<td>S_x, S_y</td>
<td>Minimize spectral power at ω_{spin} on the spin axis.</td>
<td></td>
</tr>
<tr>
<td>EDI spin axis offset</td>
<td>03</td>
<td>Electron time of flight method: Electron Drift Instrument (EDI) provides $</td>
<td>B</td>
</tr>
<tr>
<td>High range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARTH FIELD high range: absolute gains, absolute phase</td>
<td>dg_SA_abs</td>
<td>Fit to Data to Earth Field Model using weighted linear regression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dg_SP_abs ϕ_{abs}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANGE JOINING and INTERSPACECRAFT spin axis: low range gain, high range offset</td>
<td>dg_SA_abs</td>
<td>Propagate high range gains to low range, cross-calibrating AFG, DFG, 4 observatories. Propagate low range offset to high range.</td>
<td>UCLA</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low range spin plane: absolute gain, absolute phase</td>
<td>conspiracy gain and phase of low range data to high range data, cross-calibrating AFG, DFG, 4 observatories.</td>
<td></td>
</tr>
</tbody>
</table>
Bringing Everything Back Together

• An interval of data (typically one week) is calibrated successively at GSFC, IWF, UCLA
 – Each institution submits proposed changes to the calibration.
 – A ‘change’ is not a delta, but a new value for a given parameter, to be used over a specific interval.

• Configuration control and merging is accomplished in weekly teleconferences (MagCons)
 – A single calibration file contains the merged result.
 – New cal file becomes reference for the next iteration at all institutions.

Calibration Data Flow
Results Merged into a Single Calibration

- Latest time interval in calibration file contains L2pre calibration.
 - L2pre data are processed and made available for ground processing by other instruments.
- Magcon decides when all parameters have been fully updated for a given interval.
 - L2 data are processed and made available to the science community.
- There are 16 calibration files in all:
 - 4 observatories
 - x2: AFG and DFG
 - x2: High field range and Low field range

<table>
<thead>
<tr>
<th>Parameters</th>
<th>01, 02, φ12, dg_SP, sx, sy, θ1, θ2</th>
<th>03 (low range)</th>
<th>03, dg_SA_abs, dg_SP_abs, φ_abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Week</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>v19</td>
<td>v20</td>
<td>v21</td>
</tr>
<tr>
<td></td>
<td>v20</td>
<td>v21</td>
<td>v22</td>
</tr>
<tr>
<td></td>
<td>v21</td>
<td>v22</td>
<td>v23</td>
</tr>
</tbody>
</table>

Snapshot of Calibration File
CALIBRATION ACTIVITIES AT GSFC
Approach to Spin-Plane Offset Calibration

- Divide each orbit into ~15 minute intervals with 5 min. cadence.
- On each interval, optimize offsets to minimize power at ω_S.

Dynamic Offsets: o1 o2
Approach to Spin-Plane Offset Calibration

- Divide each orbit into ~15 minute intervals with 5 min. cadence.
- On each interval, optimize offsets to minimize power at ω_S.
- Evaluate spin plane magnitude (B PERP) around ω_S to derive empirical “error value”
Approach to Spin-Plane Offset Calibration

- Divide each orbit into ~15 minute intervals with 5 min. cadence.
- On each interval, optimize offsets to minimize power at ω_S.
- Evaluate spin plane magnitude (B PERP) around ω_S to derive empirical “error value”
 - Disregard offsets on intervals (shown in black) with ‘error value’ > error threshold
 - Only use the ‘red’ points!
Approach to Spin-Plane Offset Calibration

- Divide each orbit into ~15 minute intervals with 5 min. cadence.
- On each interval, optimize offsets to minimize power at ω_S.
- Evaluate spin plane magnitude (B PERP) around ω_S to derive empirical “error value”
 - Disregard offsets on intervals (shown in black) with ‘error value’ > error threshold
 - Only use the ‘red’ points!
- Choose one pair of offsets for each orbit.
 - averaging the ROI:
 - Average of ‘red’ points in a nominal ROI, indicated by green and red vertical bars.
GENERAL APPROACH TO ORTHOGONALIZATION
Summary of Methods for all Parameters in GSFC “Orthogonalization” Process

<table>
<thead>
<tr>
<th>Calibration Parameters</th>
<th>Parameter Names</th>
<th>Physical Methods Used</th>
<th>Dynamic Parameter Integration Time</th>
<th>Error value of interval increases with:</th>
<th>Integration Time for final result</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin plane offsets</td>
<td>(\theta_1, \theta_2)</td>
<td>Minimize spectral power at (\omega_{\text{spin}}) in the spin plane</td>
<td>(~15) min (44 spins)</td>
<td>ambient activity around (\omega_{\text{spin}}); high spin-axis field*</td>
<td>1 orbit / 5-7 orbits for (\theta(Ts))</td>
</tr>
<tr>
<td>spin plane gain differential and non-orthogonality</td>
<td>(dg_{\text{SP}}, \phi_{12})</td>
<td>Minimize spectral power at (2\omega_{\text{spin}}) in the spin plane.</td>
<td>(~15) min (44 spins)</td>
<td>ambient activity around (2\omega_{\text{spin}}); low spin-plane field</td>
<td>1 orbit</td>
</tr>
<tr>
<td>elevation angles of spin plane sensors</td>
<td>(\theta_1, \theta_2)</td>
<td>Minimize slope of regression between apparent spin-plane sensor offset and the spin-axis field.</td>
<td>(~30) min (88 spins)</td>
<td>ambient activity around (\omega_{\text{spin}}); (1/\Delta Bz); rate of change of sensor temperature</td>
<td>7 orbits (sometimes more)</td>
</tr>
<tr>
<td>spin axis alignment</td>
<td>(s_x, s_y)</td>
<td>Minimize spectral power at (\omega_{\text{spin}}) on the spin axis</td>
<td>(~15) min (44 spins)</td>
<td>ambient activity around (\omega_{\text{spin}}); low spin-plane field; deviation from reference sensor temperature</td>
<td>1 orbit</td>
</tr>
</tbody>
</table>
3 More Parameter Pairs
spinx/spiny, dg_sp/phi12, theta1/theta2
TEMPERATURE-DEPENDENT OFFSETS
A Typical Week Without Shadows

• Typical week: 21-28 January, 2016
 • No eclipses
 • Temperature variations in low range is minimal (~2 degrees).
 • Temperature changes are mostly outside the ROI.
 • We applied constant offsets for each orbit, optimized for the ROI
 • Small amount of spin tone is noticeable outside of the ROI.
 • Amplitude of residual spin tone generally < 0.2 nT
 • Spin tone is much lower than the ambient signal within the ROI.
 • Due to geophysical activity, some orbits have insufficient statistics to calculate offset: use value from last orbit.
A Typical Week With Shadows

- Constant offsets fail to remove spin tone during and after eclipses in this week of 21-27 April, 2016.
 - Dynamic offsets differ from the orbit average by 0.3 – 0.5 nT for a significant time after eclipse.
 - In Phase 2, this will affect primary science.
- Dynamic offsets are too noisy and sparse to be applied directly to the data.
 - The ‘noise’ may be geophysical signal at spin freq. that we do not want to remove.
- The dynamic offsets appear to follow a consistent pattern from orbit to orbit.
Mapping Temperature Fits Back to the Time Domain

- Excellent match to
- Two possible approaches that characterize variations in offsets:
 - Spline fit to superposed epoch (magenta in two middle panels)
 - Spline fit to offset vs. temperature, then map back into the time domain (cyan)
- Temperature-based approach has a sound physical interpretation.
Superposed-Epoch Analysis of Spin-Plane Offsets

- o_1, o_2, and sensor temperature (STEMP) for 7 orbits from the previous slide plotted superposed-epoch.
 - This analysis considers only the points with sufficiently low error values.
 - Epoch 00:00 is the time of minimum temperature on each orbit (end of eclipse).
 - Offsets stabilize 8 hours after end of eclipse.

- Spline fit to superposed epoch
 - Variations show multiple time scales.
 - 15-minute bins required to capture detail in eclipse recovery.
 - Overly variable where offset seems stable.
 - Spline fit to offset vs. temperature, then map back into the time domain (cyan)

- Temperature-based approach has a dynamic offset using splined piecewise linear regression on 15-min bins.
Spline Fits to Temperature Trends

For each sensor, offsets are characterized by two distinct functions of sensor temperature.

1. ‘Adiabatic’ (red points)
 - Increasing temperatures during Eclipse Recovery
 - Slowly decreasing temperatures (e.g. cooling after Earth’s albedo).
 - Science requirement applies to data in this set.

2. Eclipse (blue points)
 - Rapidly decreasing temperatures.
 - Rapid change in offset: data can be improved, with limited accuracy.
 - No science requirement.
Orbit-constant offsets

Temperature-dependent offsets

before

after
Temperature Trends of All Spin-Plane Sensor Offsets
Application in Phase 1B (and improving Phase 1A)

- Old Method:
 - When the ambient noise is large, there are few good intervals in the ROI.
 - Poor statistics can cause errors in the offset from orbit to orbit.
Application in Phase 1B (and improving Phase 1A)

- Old Method:
 - When the ambient noise is large, there are few good intervals in the ROI.

New Method:

The temperature distribution of offsets for the 7 orbits is fully sampled!
Application in Phase 1B (and improving Phase 1A)

- Mapping the STEMP fits to time domain (cyan traces)
 1. Leverages the statistics from outside of the ROI to give better results in the ROI.
 2. Improves results outside of the ROI.

- Alternatively, 1-hour time-spline bins give comparable results
 - 1-hour bins would wash out most variations seen after eclipse: A general implementation with time-domain splines would require an adaptive bin size.
Conclusions

• In Phase 1A we achieved 0.2 nT accuracy in the offsets when reducing dynamic offsets to a single offset for each orbit.
• Temperature changes due to eclipse are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize.
• The changes in offset with temperature are deterministic.
 – At time scales of about a week, temperature-offset curves are well defined.
 – Each sensor has a distinct temperature-offset curve, thus there are implications for any inter-spacecraft data analysis.
 – Spin AXIS sensors likely exhibit similar, but distinct, temperature-dependent offsets.
• The temperature-dependent offset correction is in production for L2pre and L2 as of orbit 479 (2016-07-01 18:07:46). This includes most of the Phase 1X season of long eclipses. The algorithms are in place for Phase 2.
• Future work:
 – Account for electronics temperature and discrete jumps in offset during the week.
 – Re-process L2 to correct the remainder of Phase 1X and before.
 – Explore temperature dependence of Spin AXIS offset
References

BACKUP
Theta Angles vs Sensor Temperature

- Each high-range point represents an inbound or outbound leg of an orbit.
- Each low-range point represents one week of data.
- Generally good agreement between high and low range.
- MMS3 DFG Theta1 is an exception.
 - TUBS ground cal also showed significant difference between high and low.
Spin Axis Alignment vs Temperature

- Effective orientation of spin axis sensor in S/C coordinates
- Includes combined thermal effect on sensor, electronics, boom, and bus.
- Excellent agreement between low range and high range, except for MMS3 DFG, whose difference corresponds to the difference in Theta1.

On AFG
 - \(\frac{d(\text{spinx})}{dT_S} \approx 0.5 \frac{d(\text{theta1})}{dT_S} \) suggests spin-axis sensor is partly responsible for change in orthogonality.

On AFG and MMS4 DFG,
 - Change in spin_y without corresponding change in theta2 suggests twisting of boom.
Comparison of temperature vs time fit

- Temperature-domain splines, mapped back into the time domain (cyan), closely match time-domain splines (magenta).

- Features of Temperature splines:
 - 1-degree bins follow the significant trends
 - Gives stable results in the ROI

- Features of time-domain splines
 - 15-minute bin size captures essential temperature variations.
 - Too much variation when temperature is stable. TODO: let bin size increase as temperature stabilizes.
A less ideal case

- The temperature trend of each orbit is not always identical.
Determining offsets when there is geophysical activity

- Current Method takes orbit-averaged offsets in the ROI.
 - Few good fits in the ROI
 - Don’t have good statistics when we need them.

 - 1-hour time-spline bins give comparable results.

 - Mapping the STEMP fits to time domain gives excellent results in the ROI
 - questionable at the end, but differences are < ~0.05 nT, and these are v4 cals.

However, the temperature range is fully sampled!
‘Tails’ in distributions at high temperature may be due to Theta
Offset for each orbit determined by fit to previous 7 orbits.
Trend of orbit offsets, compared to orbit averages
Comparing to Electronics Temperature

MMS1 AFG ORBIT OFFSETS AND ELECTRONICS TEMPERATURE

Month 2016

Tue Sep 6 09:45:11 2016 kbromund

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 -6.0 -5.8 -5.6 -5.4 -5.2 -5.0

Mar May Jul Sep

Mar May Jul Sep

MMS1 AFG ORBIT OFFSETS AND ELECTRONICS TEMPERATURE

01 02 AO1 AO2
Regression by eye:

- O1: \((7.04 - 6.79) / 8\) = 0.03125
- O2: \((-6.03) - (-5.78)) / 8\) = -0.03125
OFFSET vs ETEMP
MMS1 AFG

This time, etemp calculated by averaging only the ‘good’ intervals.
Subtracting E-temp Trend

Before

After

Find slope of Etemp (b1, b2):

bilinear regress stemp > -30

b1 = 0.051

b2 = -0.043
Using Both Sensor Temperature
and Electronics Temperature