CONTENTS OF DISCUSSION

• Introduction
 ➢ Description of Dynamic Thermal Barriers
 ➢ Types/Construction of Dynamic Thermal Barriers

• Objectives and Approach
 ➢ Project objectives
 ➢ Tribometer upgrades and checkout
 ➢ Test materials & test parameters

• Triobological Results
 ➢ Previous results from NASP
 ➢ Tribopairs (base materials and coatings)
 ➢ Temperature
 ➢ Load

• Summary, Conclusions, and Challenges
AN INTEGRAL PART OF THE TPS

- Referred to as “dynamic thermal seals” or “dynamic seals”
- High-temp. ceramic-based materials
- Installed in TPS interface gaps between moving structures
- Roles
 - Thermal – limit inboard temperatures
 - Structural/physical – survive temps. and wear, not impede actuation/operation of control surface, accommodate deflections
DYNAMIC THERMAL SEALS

- Compliant Thermal Barriers (CTB)
 - Nextel™ sheath
 - Saffil® core, spring tube
 - Higher temps, lower stiffness, higher leakage

- Rope Thermal Barriers (RTB)
 - Nextel™ sheath
 - Fiber/fabric/rope core
 - Higher temps, higher stiffness, lower leakage

- Hybrid Sheath Thermal Barriers (HSTB)
 - Metallic wire braid/Nextel™ sheath
 - Saffil®, fiber/fabric/rope core
 - Better wear resistance, lower temps

- Wafer Seals
 - Monolithic materials (metals, ceramics, etc.)
 - Low leakage (tight tolerances)
 - Require preloader
OBJECTIVES

• Overall Objectives
 ➢ Develop a repeatable screening tool to assess tribological performance of dynamic thermal barrier materials
 ➢ Create a database of thermal barrier tribological performance (against TPS or propulsion materials)
 ➢ Improve tribological performance of dynamic thermal barriers

• Dynamic thermal barrier triobological performance
 ➢ Baseline performance against several materials
 o Metal
 o Non-ablative TPS
 o Ablative TPS
 ➢ Effects of various parameters
 o Load
 o Temperature
 o Coatings
High Temperature Tribometer Checkout Results

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Date</th>
<th>Pin</th>
<th>Plate</th>
<th>Normal Load</th>
<th>Est. CoF, sliding</th>
<th>Published Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>19-Aug</td>
<td>304 SS</td>
<td>304 SS</td>
<td>200</td>
<td>0.39</td>
<td>0.18</td>
<td>---</td>
</tr>
<tr>
<td>0.2</td>
<td>20-Aug</td>
<td>304 SS</td>
<td>304 SS</td>
<td>200</td>
<td>0.39</td>
<td>0.57</td>
<td>0.53 ASM Handbook¹</td>
</tr>
<tr>
<td>0.3</td>
<td>20-Aug</td>
<td>304 SS</td>
<td>304 SS</td>
<td>400</td>
<td>0.79</td>
<td>0.46</td>
<td>0.53 ASM Handbook¹</td>
</tr>
<tr>
<td>0.4</td>
<td>27-Aug</td>
<td>4130 Steel</td>
<td>4130 Steel</td>
<td>200</td>
<td>0.39</td>
<td>0.42</td>
<td>0.40-0.60 ASM Handbook², www.engineersedge.com</td>
</tr>
<tr>
<td>0.5</td>
<td>28-Aug</td>
<td>4130 Steel</td>
<td>4130 Steel</td>
<td>400</td>
<td>0.79</td>
<td>0.54</td>
<td>0.40-0.60 ASM Handbook², www.engineersedge.com</td>
</tr>
<tr>
<td>0.6</td>
<td>28-Aug</td>
<td>4130 Steel</td>
<td>4130 Steel</td>
<td>400</td>
<td>0.79</td>
<td>0.46</td>
<td>0.40-0.60 ASM Handbook², www.engineersedge.com</td>
</tr>
<tr>
<td>0.7</td>
<td>28-Aug</td>
<td>Teflon</td>
<td>4130 Steel</td>
<td>200</td>
<td>0.39</td>
<td>0.18</td>
<td>0.16 ASM Handbook³</td>
</tr>
<tr>
<td>0.8</td>
<td>28-Aug</td>
<td>Teflon</td>
<td>4130 Steel</td>
<td>400</td>
<td>0.79</td>
<td>0.17</td>
<td>0.16 ASM Handbook³</td>
</tr>
<tr>
<td>0.9</td>
<td>28-Aug</td>
<td>Teflon</td>
<td>Teflon</td>
<td>200</td>
<td>0.39</td>
<td>0.13</td>
<td>0.04-0.07 ASM Handbook</td>
</tr>
<tr>
<td>0.10</td>
<td>28-Aug</td>
<td>Teflon</td>
<td>Teflon</td>
<td>200</td>
<td>0.39</td>
<td>0.13</td>
<td>0.04-0.07 ASM Handbook</td>
</tr>
<tr>
<td>N0.1</td>
<td>28-Aug</td>
<td>4130 Steel</td>
<td>Nextel 312</td>
<td>100</td>
<td>0.19</td>
<td>0.65</td>
<td>0.50-0.60 NASA TM 105199</td>
</tr>
<tr>
<td>N0.2</td>
<td>28-Aug</td>
<td>4130 Steel</td>
<td>Nextel 312</td>
<td>200</td>
<td>0.39</td>
<td>0.60</td>
<td>0.50-0.60 NASA TM 105199</td>
</tr>
</tbody>
</table>
High Temperature Wear-Resistant Coating Candidates

Introduction

Objective

- Challenges with coatings — chemical compatibility/reactions, coating thickness, adherence
- Investigated a nanocomposite MAX phase type coating (SwRI Surface Engineering)

Approach

<table>
<thead>
<tr>
<th>Coating</th>
<th>Room Temp CoF</th>
<th>High Temp CoF</th>
<th>Max Tested Temp (°C/°F)</th>
<th>Predicted Max Thermal Stability (°C/°F)</th>
<th>Trade Study Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NbN/Ag</td>
<td>0.35</td>
<td>0.27</td>
<td>1000/1832</td>
<td>1123/2053</td>
<td>297</td>
</tr>
<tr>
<td>Silver Tantalate (AgTaO₃)</td>
<td>0.60</td>
<td>0.06</td>
<td>750/1382</td>
<td>1172/2142</td>
<td>277</td>
</tr>
<tr>
<td>73 TiO₂–27 Cr₂O₃</td>
<td>0.80</td>
<td>0.35</td>
<td>800/1472</td>
<td>1780/3236</td>
<td>272</td>
</tr>
<tr>
<td>100 Cr₂O₃</td>
<td>0.25</td>
<td>0.55</td>
<td>800/1472</td>
<td>1650/3002</td>
<td>283</td>
</tr>
<tr>
<td>Au/Cr</td>
<td>0.54</td>
<td>0.34</td>
<td>1000/1832</td>
<td>1000/1832</td>
<td>284</td>
</tr>
<tr>
<td>MAX phase Ti₂AlC</td>
<td>0.70</td>
<td>0.36</td>
<td>550/1022</td>
<td>1400/2552</td>
<td>261</td>
</tr>
<tr>
<td>MAX phase Ti₃SiC₂</td>
<td>0.60</td>
<td>0.62</td>
<td>550/1022</td>
<td>1400/2552</td>
<td>249</td>
</tr>
</tbody>
</table>

| xo | 0.5 | 0.5 | 1100 | 1200 |
| w | 5 | 9 | 7 | 10 |
Test Approach

- Test Samples
 - Seal material: Nextel 312 (AF-20) and Nextel 440 (BF-20)
 - 5 harness satin weave
 - Warp: 30 threads per in.; Fill: 26 threads per inch
 - Fabric Coatings: None, TaSiN, TaSiCN (nano-composite coatings)
 - Wear surface: 4130 steel, AETB-8 tile, IN-625
- Test Parameters
 - Load: 2, 8 psi (14, 55 kPa)
 - Temperature: Ambient, 1500°F (Ambient, 815°C)
 - At least 3 tests were conducted for each tribopair at a given test condition
WEAR RESULTS: PREVIOUS TESTING

Approach
- Conducted numerous studies
- Pin-on-disk geometry (non-reciprocating)
- “Pin” materials: Nextel 312, Nextel 440, Nextel 550, Nextel 610
- Disk materials: IN 718, IN X-750, Ti₃AlNb
- Temperatures: Ambient - 1832°F (Ambient – 1000°C)
- Loads: 23 - 382 psi (160 - 2633 kPa)
- Coatings: Ag, CaF2, BN, Au

Results
- CTF generally decreased with increasing temperature (oxide-based fibers)
- CoF’s: ~0.6 - 1.0
WEAR RESULTS: EFFECT OF PRELOAD AND CYCLE NUMBER

- CoF lower at higher preload, though likely not statistically significant
- At RT against 4130 steel, low initial CoF, than it increases
- At RT against IN-625, low initial CoF, than it increases
- At 1500°F, CoF was significantly higher starting off and then decreased to fairly high value
Wear Results: Type of Nextel

- **Nextel 440 showed slight improvement over Nextel 312**
 - Most evident against Shuttle tile
 - Higher CTF likely due to higher breaking strength of N440 (250 lb/in. vs. 150 lbf/in.)
- **Shuttle tile exhibited lower CoF than 4130 steel**
- **CoF appeared to significantly increase for higher temperatures with these tribomaterials**
WEAR RESULTS: TYPE OF NEXTEL

<table>
<thead>
<tr>
<th>Type of Nextel</th>
<th>RT</th>
<th>1500°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nextel 312</td>
<td>4130 Steel</td>
<td>Shuttle Tile</td>
</tr>
<tr>
<td>Nextel 440</td>
<td>4130 Steel</td>
<td>Shuttle Tile</td>
</tr>
</tbody>
</table>

- **Introduction**
- **Objective**
- **Approach**
- **Results**
- **Summary**
Wear Results: Pin Material

- Shuttle tile showed some difference when compared to metals
 - Slightly lower CTF
 - Most evident against Shuttle tile
- Shuttle tile exhibited lower CoF than 4130 steel
- CoF appeared to increase significantly with higher temperatures with these tribomaterials
Wear Results: Pin Material

- **4130 Steel**
- **IN 625**
- **Shuttle Tile**

RT

1500°F
WEAR RESULTS: EFFECT OF COATINGS

- No significant improvement in CTF with coatings
- Performance comparable (possibly slightly worse) than uncoated Nextel 312
- Possible coating adhesion issues and reactions with Nextel
WEAR RESULTS: EFFECT OF COATINGS

N312

RT

1500°F

N312 + NTA-3

N312 + NTA-4
WEAR RESULTS: EFFECT OF COATINGS

N312

RT

N312 + NTA-5

1500°F

N312 + NTA-6
SUMMARY, CONCLUSIONS, & CHALLENGES

• Rig Upgrade
 ➢ Improved instrumentation, modernized DAQ, augmented stroke length
 ➢ Produced believable, reliable, repeatable results
 ➢ Learned significant lessons to help in design of a newer higher-temperature rig

• Wear Performance of Nextel
 ➢ Nextel durability insufficient for high temperature thermal barrier dynamic operation
 • Significant degradation in wear performance at high temperatures 1500°F
 • Require wear-resistant coatings
 ➢ Initial tests of Nextel against TPS materials demonstrated poor wear resistance, even at room temperature
 ➢ Preliminary tests with Ta-based nano-composite coatings showed no improvement

• Challenges
 ➢ Coatings that are adherent, “non-reactive,” protective, low CoF
 ➢ Coatings appear to work “better” when deposited on opposing wear surface
 • Most studies have deposited on metallic or ceramic substrates
 • Minimal evidence for success depositing on thermal barrier fabric materials
REFERENCES

