A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

Presenter: Jennifer M. Nappier
Co-Authors: Daniel J. Zeleznikar, Adam C. Wroblewski, Roger P. Tokars, Bryan L. Schoenholz, and Nicholas C. Lantz
NASA Glenn Research Center, Cleveland, Ohio

ICSSC October 2016
Outline

• Integrated Radio and Optical Communications Project Overview
• Transmitter Architecture Overview
• Software Defined Radio Prototype
• RF Transmitter
• RF Testing Results
• Optical Transmitter
• Optical Testing Results
• Conclusions
• Acknowledgements
Integrated Radio and Optical Communications Project (iROC) Overview

Description:

- Technology development program for integration of RF and optical deep space communication systems.

- Key areas of development include:
 - RF antenna + optical telescope = teletenna
 - Beaconless (open loop) optical pointing
 - RF/Optical software defined radio
The transmitter includes: Software Defined Radio (SDR) Prototype, the RF Subsystem, The Electro Optic Subsystem, and the Optics Subsystem.
Software Defined Radio Prototype

RF and Optical waveforms are integrated onto one Xilinx field programmable gate array (FPGA) development board.
RF Slice

- RF Waveform: Offset quadrature phase shift keying (QPSK)
- Symbol rate: 46.08 MSps
- RF FPGA Mezzanine Card (FMC): Contains a digital to analog converter (DAC) and oscillator at 737.28 MHz which is used to drive the RF waveform.
The RF subsystem interfaces to the DAC from the SDR, filters, mixes, and upconverts the I/Q signals from baseband to RF.

Components
- Low pass filter
- I/Q upconverter
- 32 GHz reference oscillator
RF Testing Results

Transmit Signal Spectrum

![Transmit Signal Spectrum](image1)

Constellation Diagram

![Constellation Diagram](image2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Vector Magnitude</td>
<td>11.105</td>
<td>%rms</td>
</tr>
<tr>
<td>Phase Error</td>
<td>6.520</td>
<td>Deg</td>
</tr>
</tbody>
</table>
Optical Slice

- Optical Waveform: SCPPM-16 (serially concatenated pulse position modulation), rate $\frac{1}{2}$ code
- Data rate: 200 Mbps
- Optical FPGA Mezzanine Card (FMC): Performs 16 to 1 parallel to serial conversion and divides the 2 GHz (0.5 ns) slot clock by 16 to drive the waveform.
Optical SCPPM Waveform

- SCPPM-16 (serially concatenated pulse position modulation), rate \(\frac{1}{2} \) code
- 4 slots inter symbol guard time
- 16 symbol frame acquisition sequence between code words
Components

- Driver amplifier
- Lithium niobate electro optic modulator
 - 20 dB extinction ratio
 - >40 dB extinction ratio
- Bias controller
- 1550 nm laser source
- Optical attenuator
A series of axicon lenses maximizes the transmitted power by directing nearly all of the laser power around the secondary reflector.
Optical Testing Results

<table>
<thead>
<tr>
<th>Specified Electro Optic Modulator Extinction Ratio</th>
<th>Code Words Processed</th>
<th>Code Word Errors</th>
<th>K_s (photons/signal slot)</th>
<th>K_b (photons/slot)</th>
<th>Average PMT Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 dB</td>
<td>43,900</td>
<td>14</td>
<td>3.6</td>
<td>0.037</td>
<td>0.91</td>
</tr>
<tr>
<td>>40 dB</td>
<td>43,900</td>
<td>4</td>
<td>4.3</td>
<td>0.0025</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Configuration:
- Modulation: SCPPM-16, rate $\frac{1}{2}$
- Slot clock: 20 MHz (50 ns)
- Data rate: 2 Mbps
- Receiver post processing system
Conclusions

• RF and Optical COTS prototype was designed and tested in a laboratory
• Future work includes porting the design to a platform designed for space
Acknowledgements

- The authors would like to thank the NASA iROC team members for their work on the RF and Optical SDR prototype, including Dr. Sarah Tedder, Mr. Brian Vyhnalek, and Ms. Caitlyn Harrington.

- This work was performed under the NASA SCaN Program at the NASA Glenn Research Center.