Implementation of a Parameterized Interacting Multiple Model Filter on an FPGA for Satellite Communications

Timothy M. Hackett
Sven G. Bilén
Paulo Victor R. Ferreira
Alexander M. Wyglinski
Richard C. Reinhart

16 November 2016

This work was sponsored under by a NASA Space Technology Research Fellowship (grant number NNX15AQ41H) and a cooperative agreement with NASA John H. Glenn Research Center (grant number NNC14AA01A).
Overview of Research

Diagram showing the satellite TDRS 12, the ScaN Testbed, and ground stations connected by different bands (Ku-band, Ka-band, S-band). Distances are marked: 36,000 km, 2,000 km, 425 km, and 200 km.
Targeted Platform

JPL Radio
- 66-MHz SPARC processor
- 2 x Xilinx Virtex-II FPGAs
- S-band transceiver
- L-Band (GPS) receiver

Interacting Multiple Model (IMM) Background

Interacting Multiple Model (IMM) Background

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Step Type</th>
<th>Iterations Needed</th>
<th>Expression Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX01</td>
<td>SF</td>
<td>1</td>
<td>$\hat{\mu}(k+1</td>
</tr>
<tr>
<td>MIX02</td>
<td>SF</td>
<td>1</td>
<td>$\pi^T \times \text{diag}(\mu(k))$</td>
</tr>
<tr>
<td>MIX03</td>
<td>SF</td>
<td>1</td>
<td>$\mu(k) = (\pi^T \times \text{diag}(\mu(k)))^T \times (\text{diag}(\mu(k+1</td>
</tr>
<tr>
<td>MIX04</td>
<td>SF</td>
<td>1</td>
<td>$\hat{X}_0(k</td>
</tr>
<tr>
<td>MIX05</td>
<td>DF</td>
<td>R^2</td>
<td>$\hat{X}_0(k</td>
</tr>
<tr>
<td>MIX06</td>
<td>DF</td>
<td>R^2</td>
<td>$(\hat{X}_0(k</td>
</tr>
<tr>
<td>MIX07</td>
<td>DF</td>
<td>R^2</td>
<td>$P_{j0}(k</td>
</tr>
<tr>
<td>KF01</td>
<td>DF</td>
<td>R</td>
<td>$\hat{X}_j(k+1</td>
</tr>
<tr>
<td>KF02</td>
<td>DF</td>
<td>R</td>
<td>$F \times P_{j0}(k</td>
</tr>
<tr>
<td>KF03</td>
<td>DF</td>
<td>R</td>
<td>$P_j(k+1</td>
</tr>
<tr>
<td>KF04</td>
<td>DF</td>
<td>R</td>
<td>$P_j(k+1</td>
</tr>
<tr>
<td>KF05</td>
<td>DF</td>
<td>R</td>
<td>$S_j(k+1) = H \times P_j(k+1</td>
</tr>
<tr>
<td>KF06</td>
<td>DF</td>
<td>R</td>
<td>$K_j(k+1) = \frac{P_j(k+1</td>
</tr>
<tr>
<td>KF07</td>
<td>DF</td>
<td>R</td>
<td>$P_j(k+1</td>
</tr>
<tr>
<td>KF08</td>
<td>DF</td>
<td>R</td>
<td>$e_j(k+1) = \frac{1}{2}(k+1) - H \times \hat{X}_j(k+1</td>
</tr>
<tr>
<td>KF09</td>
<td>DF</td>
<td>R</td>
<td>$\hat{X}_j(k+1</td>
</tr>
<tr>
<td>COM01</td>
<td>DF</td>
<td>R</td>
<td>$S_j^{-1}(k+1</td>
</tr>
<tr>
<td>COM02</td>
<td>SC</td>
<td>R</td>
<td>$-\frac{1}{2}e_j^T(k+1) \times S_j^{-1}(k+1</td>
</tr>
<tr>
<td>COM03</td>
<td>SC</td>
<td>R</td>
<td>$\exp(-\frac{1}{2}e_j^T(k+1) \times S_j^{-1}(k+1</td>
</tr>
<tr>
<td>COM04</td>
<td>SC</td>
<td>R</td>
<td>$</td>
</tr>
<tr>
<td>COM05</td>
<td>SC</td>
<td>R</td>
<td>$</td>
</tr>
<tr>
<td>COM06</td>
<td>SC</td>
<td>R</td>
<td>$L_j(k+1) = (2\pi)^{\frac{n}{2}}(</td>
</tr>
<tr>
<td>COM07</td>
<td>SF</td>
<td>1</td>
<td>$\text{diag}(L(k+1)) \times \hat{\mu}(k+1</td>
</tr>
<tr>
<td>COM08</td>
<td>SF</td>
<td>1</td>
<td>$\hat{\mu}(k+1</td>
</tr>
<tr>
<td>COM09</td>
<td>SF</td>
<td>1</td>
<td>$\mu(k+1) = (\text{diag}(\hat{\mu}(k+1</td>
</tr>
<tr>
<td>COM10</td>
<td>SF</td>
<td>1</td>
<td>$\hat{X}(k+1</td>
</tr>
</tbody>
</table>
Implementation Trade Studies

\[
A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{bmatrix} \quad A^{-1} = ?
\]

Integer (16b)

Fraction (32b)

Schur Complement Architecture

Sudarsanam, A. et al., *IET Computers & Digital Techniques*, 2010
Schur Complement Analysis

<table>
<thead>
<tr>
<th>Multiplier Latency</th>
<th>Addition Latency</th>
<th>Divider Cycles Per Operation</th>
<th>Divider Latency</th>
<th>Occupied Slices</th>
<th>Slice Flip Flops</th>
<th>4-Input LUTs</th>
<th>Max Clock Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>754</td>
<td>541</td>
<td>1299</td>
<td>50.742</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td>829</td>
<td>925</td>
<td>1340</td>
<td>133.233</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>26</td>
<td>27</td>
<td>849</td>
<td>1090</td>
<td>1328</td>
<td>152.879</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>26</td>
<td>27</td>
<td>910</td>
<td>1201</td>
<td>1343</td>
<td>175.389</td>
</tr>
</tbody>
</table>
IMM Analysis

in_bus
load_en
in_mem_bank_addr
in_sub_mem_bank_addr
start
rst
clk

imm_filter

out_element
data_ready
rdy_to_load

N_BITS_PRECISION
N_X_ELEMENTS
N_KALMAN_FILTERS
in_mem_bank_addr
in_sub_mem_bank_addr
start
rst
clk

IMM Filter
IMM Controller
KF Controller
KF Controller
IMM Mem Bank
KF Mem Bank 1
KF Mem Bank 2
KF Mem Bank 3
KF Mem Bank 4
KF Mem Bank 5
MEM1
MEM2
MEM3
MEM4
MEM5

Architecture Controller

IMM PE Controller
LL PE Controller
IMM PE Controller 1
IMM PE Controller 2
IMM PE Controller 3

N_Z_ELEMENTS
N_X_ELEMENTS
N_KALMAN_FILTERS
N_PES_PER_KF_CONTROLLER
N_PES_PER_IMM_CONTROLLER
N_LUT_PRECISION_EXP_CALC
N_B_TO_I_CELL_BUFF_LENGTH
load_en
in_bus
rdy_to_load

PennState
Example Scenario

State Model
Constant Acceleration Model

Available Measurements
SNR, SIR

System Models
Clear Sky, Rain Fade, Ionospheric Scintillation, Tropospheric Scintillation, Multipath Fading
IMM Analysis

![Graph showing filter rate vs. number of processing elements for different KFs and Z Elements configurations.]

- KFs = 2, X Elements = 2, Z Elements = 3
- KFs = 2, X Elements = 2, Z Elements = 4
- KFs = 2, X Elements = 4, Z Elements = 2
- KFs = 6, X Elements = 2, Z Elements = 3

A, B, C = PE Controllers,
PEs Per KF Controller,
PEs Per IMM Controller
If you’re interested, contact me at: Tim Hackett: tmh5344@psu.edu