Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

Dr. Maximilian C. Scardelletti – NASA Glenn Research Center
Dr. Christian A. Zorman – Case Western Reserve University
Introduction

• Sensing systems for harsh environments:

 High temperature electronics and sensors

Three Major Industries

• Downhole Oil and Gas
 Drilling operations were limited 150 to 175°C for reserves in easily accessible wells
 Declining reserves force deeper wells, which increase drilling temperatures to 300°C

• Automobile
 Cylinder pressures temperature: 300°C
 Exhaust sensing temperature: 850°C

• Aerospace
 Monitoring the health of aircraft engines at temperatures above 300°C (emissions, temperature, blade tip clearance and pressure)
 Atmospheric and surface conditions of Venus (480°C)
Introduction

Develop a SiC-based MEMs capacitive pressure sensor system that can be used to monitor the pressure of a conventional gas turbofan engine.

Operating Conditions:

- Temperature: 25 to 500°C
- Pressure: 0 to 300 psi
- Vibration: up to 5.3 G\textsubscript{rms}
System Design

The system is realized by integrating the following components on a common, high temperature substrate:

1. A novel SiCN MEMS capacitive pressure sensor
2. 6H-SiC MESFET as active device
3. MIM capacitors, wirewound inductors, thick film resistors
4. Low form factor packaging
5. Borescope plug adaptor
Electronics Design

The proposed system uses a Clapp-Type Oscillator Design

- The integrated system uses a Clapp-type oscillator with capacitive pressure sensor located in LC tank circuit
- As pressure increases, pressure sensor capacitance decreases, which causes the operational frequency to increase
- Cree SiC MESFET used for driving circuit into oscillation
Clapp-Type Oscillator vs Colpitts Oscillator

• The proposed Clapp oscillator requires one inductor, three capacitors and one MESFET. Requires fewer components vs. Colpitts oscillator design
 • Increases system efficiency
 • Increases system reliability under harsh environment conditions
• L_T and C_{SENSE} are in series and C_{SENSE} is used to set the operational frequency
• C_1 and C_2 are used to control the gain conditions
• This arrangement increases frequency stability, making it more frequency stable than the Colpitts design.
Pressure Sensor Testing

High Temperature and Pressure Chamber

System Key Features

• Pressure range: 0 to 100 psi
• Temperature range: 25 to 500°C
• LabVIEW control program
• Power source
• Multiple thermocouple
• Multiple feedthroughs
• Sight glass for signal transmission
Pressure Sensor

Sporian SiCN Capacitive Pressure Sensor

- Parallel plate capacitor model
- SiCN membrane
- Temperature range: up to 1000°C
- Pressure range: 0 to 400 psi

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.84</td>
</tr>
<tr>
<td>50</td>
<td>3.6</td>
</tr>
<tr>
<td>100</td>
<td>3.3</td>
</tr>
</tbody>
</table>

![SiCN Capacitive Pressure Sensor](image)

![Capacitance vs Pressure](image)
Oscillator Design

Circuit Simulations

Keysight’s Advanced Design System (ADS) Software suite

CT = 3.84 pF
LT = 780 nH
C1 = 14 pF
C2 = 41 pF
RG = 10KΩ
LD = 390 nH
CD = 188 pF

Cree SiC MESFET model

Oscillation Frequency
96.7 MHz
Circuit Simulations

Harmonic Balance Simulation

- 96.7 MHz 1st Harmonic
Oscillator Design

Circuit Simulations
To achieve oscillation stability
1) Phase must be zero at f_0
2) Loop gain must be greater than unity at f_0

Zero Phase at 96.7 MHz
Greater than unity at 96.7 MHz
Oscillator Design

Circuit Simulations

Harmonic Balance Simulation

P = 0 psi \(f = 96.7 \text{ MHz} \)
P = 50 psi \(f = 99.2 \text{ MHz} \)
P = 100 psi \(f = 102.8 \text{ MHz} \)
Packaged wired prototype has the following characteristics

• Unpackaged Sensor System Size: 8 x 40 x 4 mm³ (including on-board DC bias circuits)

• Form Factor: Packaged sensor equipped with borescope adaptor for a borescope plug on engine

• Maximum Operational Temperature: 500°C for 1 hour at tip of borescope adaptor

• Maximum Vibration: 5.3 G_{rms} along X-, Y- and Z-axis for 20 min
Pressure Sensor System

Entire circuit assembled on a single alumina substrate

(6 x 35 x 2 mm³)
Pressure Sensor System

Packaged Sensor System Assembly

Key Features

- Stainless steal packaging
- Thermo couples
- Custom connector/cable from package to facilitate input power and output signal
- Borescope plug adaptor
- Size: 30 x 150 mm
Pressure Sensor System

Bench-Top Acceptance Testing

- Custom-in-house pressurized fixture
- Packaged sensor is attached to quasi-borescope adaptor
- Thermocouple inside fixture to emulate inner engine temperature
Pressure Sensor System

Bench-Top Packaged System Characterization

To emulate actual jet turbofan engine conditions the packaged sensor was heated to over 500°C and the pressure was increased from 0 to 300 psi.

Note: The temperature recorded on the metal sleeve was ≈ 400°C, which is assumed to be the steady-state temperature of the system.
Bench-Top Packaged System Characterization

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96.88</td>
</tr>
<tr>
<td>100</td>
<td>102.79</td>
</tr>
<tr>
<td>200</td>
<td>109.54</td>
</tr>
<tr>
<td>300</td>
<td>116.77</td>
</tr>
<tr>
<td>350</td>
<td>119.86</td>
</tr>
</tbody>
</table>

Note: Simulated and measured response at 0 and 100 psi are virtually identical: Incredibly accurate circuit model

\[\frac{\Delta f}{\Delta P} = 6.57 \times 10^{-2} \, \text{MHz/psi} \]

Percent difference = 21.2%

Spectrum response of packaged pressure sensor from 0 to 350 psi at 25°C
Pressure Sensor System

Bench-Top System Characterization

The temperature at the tip of the sensor inside the pressurized fixture is 540°C (≈ 400°C at the sleeve)

The change in frequency at 25 and 540°C at 0 psi is less 1%

0 psi → 96.3 MHz
320 psi → 117.8 MHz

6.8 x 10⁻² Δf/ΔP MHz/psi
Percent difference = 20 %
Pressure Sensor System

Bench-Top Packaged System Characterization

Structural Dynamic Testing

- Emulate on engine testing
- Sine wave sweeps
- Random vibration
- Maximum vibration 5.3 G_{rms}
- X-, Y- and Z-axis testing
- Resonate frequency recorded at the beginning and end of each axis test. NO change!!
Pressure Sensor System

Bench-Top Packaged System Characterization

The packaged sensor system was again measured after structural dynamic testing.

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 psi</td>
<td>25°C</td>
<td>97.3 MHz</td>
</tr>
<tr>
<td>0 psi</td>
<td>520°C</td>
<td>96.5 MHz</td>
</tr>
<tr>
<td>342 psi</td>
<td>520°C</td>
<td>118.1 MHz</td>
</tr>
</tbody>
</table>

The change in frequency at 25 and 540°C at 0 psi is less 1%
Vehicle Integrated Propulsion (VIPR)

VIPR was a series of ground-based on-wing engine demonstrations to mature aircraft engine health management technologies.

Test vehicle was a U.S. Air Force C-17 aircraft equipped with Pratt & Whitney F117 engines.

VIPR partners include NASA, U.S. Air Force, Pratt & Whitney, GE, Rolls Royce, Boeing, FAA, USGS, and other external organizations.
Test Objectives:
Demonstrate capability of advanced health management technologies for detecting and diagnosing incipient engine faults before they become a safety impact and to minimize loss of capability

Approach:
Perform on wing engine ground tests
- Normal engine operations
- Seeded mechanical faults
- Seeded gas path faults
- Accelerated engine life degradation through volcanic ash ingestion testing
VIPR3

CST Aircraft / Communication Layout

*****Equipment positions are Approximate*****
VIPR3

Aircraft Research Station Layout
VIPR3

Aircraft Research Station Layout
VIPR3

Measurement setup in fuselage to sensor on the engine attached to the wing

- Spectrum analyzer
- Power supply
- Laptop
- Labview program to record measurements
- 200 ft cable going from equipment to sensor on engine
Vehicle Integrated Propulsion (VIPR)

Sensed Pressure Locations

AP7: High temp capacitive pressure sensor system
Packaged Sensor On-Engine

Environmental Health Monitoring Test

Baseline Engine Test Profile

Sensor Output Data

BLD14 Failed Open Baseline Run

Pressure

Time (seconds past midnight)

5.55 5.6 5.65 5.7 5.75 5.8 5.85

x 10^4

P25
Ps3
Sporian

Max RPM
Ramp
Snap

Power Setting
Time

Idle RPM
Packaged Sensor On-Engine

Environmental Health Monitoring Test

Transient Engine Test Profile

Sensor Output Data

BLD14 Failed Open During Ramp Accel

- P25
- Ps3
- Sporian

Power Setting

Time

Ramp

Idle

RPM

5.87 5.88 5.89 5.9 5.91 5.92 5.93 x 10^4

Time (seconds past midnight)
Packaged Sensor On-Engine

Environmental Health Monitoring Test

Steady-State Engine Test Profile

Sensor output data

BLD25 Failed Open at Steady-State
Packaged Sensor On-Engine

Volcanic Ash Testing

1st day of low flow volcanic ash ingestion testing

3rd day of low flow volcanic ash ingestion testing

14 hours low rate ash testing 1 mg/cu meter
Summary

• Simulated Clapp-type oscillator to prove concept
• Developed a packaged pressure sensor system
• Demonstrated accuracy of simulations vs. measured
• Performed pressure, temperature and vibration acceptance testing
• Successfully demonstrated sensor system tracking engine performance
Acknowledgements

NASA Glenn Research Center

Roger Meredith, Elizabeth Mcquaid Jennifer Jordan, Nick Varaljay, Robert Butler, Glenn Beheim and Gary Hunter

Sporian Microsystems

Keven Harsh, Evan Pilant and Mike Usrey
Thank you
Appendix Slides
Pressure Sensor System

Bench-Top Packaged System Characterization
Structural Dynamic Testing

1.4 g sinusoidal sweep profile
Pressure Sensor System

Bench-Top Packaged System Characterization

Structural Dynamic Testing

5.3 Grms random vibration profile