National Aeronautics and Space Administration

NASA/ORNL/AFRL project work on EBM LSHR: Additive manufacturing of high-temperature gamma-prime strengthened Ni-based superalloys

Chantal K. Sudbrack1; Michael M. Kirka2; Ryan R. Dehoff2; Robert W. Carter1; S. Lee Semiatin3; Timothy P. Gabb1

1. NASA Glenn Research Center (Cleveland OH)
2. Oak Ridge National Laboratory (Oak Ridge TN)
3. Air Force Research Laboratory (WPAFB OH)

Funding: NASA GRC Center Innovation Fund, NASA HEOMD Space Launch System Liquid Engine Office Additive Manufacturing Structural Integrity Initiative, DOE Office of Energy Efficiency & Renewable Energy, Advanced Manufacturing Office, contract DE-AC05-00OR22725 with UT-Battelle, LLC.
High Temperature Gamma’ Strengthened Superalloys

Work initiated as a CIF, has continued with ARMD, and SLS Engine Office funds

Applications: Rocket Engines, Turbomachinery for commercial & military aircraft

- **Objective:** Expand Additive Manufacturing to high temperature gamma’ superalloys. Overcome the technical barriers due to poor weldability in these alloys.

- **Process:** Electron-beam melting
 - Heated powder-bed for reduced residual stresses and slower cooling rates
 - Multiple beam for faster builds
 - Vacuum for lower risk of contamination

- **Multi-Agency Team:**
 - ORNL- State-of-the art fabrication with in-situ monitoring, Arcam development center on-site
 - NASA GRC (PI)– Powder properties, analytical chemistry, microstructure evaluation, mechanical behavior
 - AFRL– microstructural modeling

Approved for public release; distribution is unlimited
High Temperature Gamma’ Strengthened Superalloys

Technical Approach:
- Benchmarking of A.M. feedstock
 - We are using Low Solvus High Refractory (LSHR) disk alloy
- Identify preferred manufacturing pathway
 - Optimization of processing & post heat treatments
- Durability assessment and detailed characterization
 - Differentiate properties of AM from conventional PM and casting technologies

Long-range vision:
- Development of new alloys that leverage AM capabilities and mitigate cracking
 - May extend beyond gamma-prime strengthened...
- Tailored material properties for light weight and durability
 - Chemistry and microstructural gradients.

<table>
<thead>
<tr>
<th>Location</th>
<th>Key Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 °F rim</td>
<td>Need high creep life and crack growth resistance</td>
</tr>
<tr>
<td>1300 °F web</td>
<td>Creep/fatigue interaction</td>
</tr>
<tr>
<td>800 °F bore</td>
<td>Need high tensile strength and low cycle fatigue life</td>
</tr>
</tbody>
</table>

Test Specimens built at ORNL

Approved for public release; distribution is unlimited