A Risk-Benefit Analysis of Prophylactic Surgery before Extended-Duration Spaceflight

Danielle Carroll, MD, PGY-1; David Reyes, MD, MPH, MS; Marlei Walton, PhD, MSE; Eric Kerstman, MD, MPH; and Erik Antonsen, MD, PhD

1 UC San Diego Department of General Surgery
2 NASA, Johnson Space Center, Exploration Medical Capability
3 UTMB, PMCH-Aerospace Medicine
4 KBRwyle, Houston, TX

88th Annual Aerospace Medical Association Meeting, 2017 – Denver, Colorado
Disclaimer

- No off label uses
- No conflicts of interest
During the cruise phase to Mars...

- A crewmember complains of a dull, aching periumbilical pain
- The pain migrates to the RLQ within several hours of onset
- Followed by nausea, anorexia, and general feeling of malaise

- The Crew Medical Officer finds...
 - Fever to 38.9°C
 - Positive Psoas and Obturator signs on exam
 - Ultrasound is inconclusive

- Now what?
Background

• Even the healthiest persons can develop surgical disease

• Most common operative illnesses in a healthy population
 • Acute Appendicitis → 7-8% lifetime risk*
 • Acute Cholecystitis → 20% U.S. adults >40 yo w/ biliary calculi*

• The Fear: Rupture → Peritonitis → Sepsis → Death

• Extremely limited surgical capacity aboard spacecraft

Prior Research Did Not Quantify Risk

Surgical Care in Space

MARK R. CAMPBELL, M.D.

mission, as they often require medical evacuation (1–5). The annual incidence of minor surgical diseases in these analogue populations appears to be 1/8000 to 1/13,000 person-days. Thus, we could expect a single surgical

Nonoperative Treatment of Suspected Appendicitis in Remote Medical Care Environments: Implications for Future Spaceflight Medical Care

Mark R Campbell, MD, FACS, Smith L Johnston III, MD, Tom Marshburn, MD, John Kanc, MD, Deamond Lugg, MD, FAFOM

Anaphylaxis, Intra-abdominal Infections, Skin Lacerations, and Behavioral Emergencies: A Literature Review of Austere Analogs for a Near Earth Asteroid Mission

Chad G. Ball, MD, MSC
Andrew W. Kirkpatrick, MD
David R. Williams, MD
Jeffrey A. Jones, MD, MS
J.D. Polk, DO MS CPE
James M. Vanderplaat, MD, MFS*
Mark A. Talamini, MD*
Mark R. Campbell, MD*
Timothy J. Broderick, MD*
Hypothesis

• Are there benefits to prophylactic surgery for exploration missions?

• The incidence of small bowel obstruction (SBO) associated with prophylactic surgery will NOT exceed the risk of acute appendicitis and/or cholecystitis during an extended-duration space mission

• If true, then prophylactic surgery may be useful
Methods – Integrated Medical Model

Integrated Medical Model

- Probabilistic Risk Analysis / Monte Carlo Simulation

- Medical Events
- Crew Impairment
- Loss of Crew Life
- Evacuation
- Resources consumed

Scenario Definition (DRM)

iMED Database

100 Medical Conditions
Methods – Integrated Medical Model

End States:
- Total Medical Events
- Quality Time Lost
- Evacuation
- Loss of Crew Life
- Resource Utilization
Methods – Design Reference Mission (DRM)

- 6-person crew
- 2.5-year Mars mission
- Model parameters
 - Sex
 - Coronary Artery Calcium Score
 - Dental Crowns
 - Number of Extravehicular Activities
 - History of Prior Abdominal Surgery
- 231 EVA excursions
Methods – Design Reference Missions (DRMs)

<table>
<thead>
<tr>
<th>DRM</th>
<th>Description</th>
<th>SBO (mean events per person year)*</th>
<th>Best Case / Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>No abdominal surgery</td>
<td>0</td>
<td>n.a.</td>
</tr>
<tr>
<td>LA</td>
<td>Prophylactic LA, appendicitis = 0</td>
<td>0.0016</td>
<td>75% / 25%</td>
</tr>
<tr>
<td>LC</td>
<td>Prophylactic LC, cholecystitis = 0</td>
<td>0.0006</td>
<td>67% / 33%</td>
</tr>
<tr>
<td>LA + LC</td>
<td>Prophylactic LA & LC, both = 0</td>
<td>0.0022</td>
<td>67% / 33%</td>
</tr>
</tbody>
</table>

Model Limitations

• Baselined to the ISS medical capabilities and environment
• Medical conditions are all correctly diagnosed
• All treatments are 100% effective
• No timeline
• Medical conditions are independent of each other
 • Same crewmember can EVAC/LOCL more than once

➡️ Uncertainty ranges not represented in the modified input data
➡️ Model limitations generally result in conservative estimates when compared to the real world
Model Outcomes of Interest

- **Evacuation (EVAC):**
 - Consideration of evacuation when treatment capability exceeded
 - EVAC from Mars is not an option, still useful to assess risk

- **Loss of Crew Life (LOCL):**
 - Death due to severity of illness or exceeding treatment capacity
Results – EVAC Probability

Control: 0.1768
LA: 0.1839
LC: 0.1804
LA + LC: 0.1878
Results – LOCL Probability

![Graph showing LOCL Probability for Control, LA, LC, and LA + LC groups.]

- Control: 0.0241
- LA: 0.0233
- LC: 0.0247
- LA + LC: 0.0239
Results

Benefits of prophylactic surgery do NOT outweigh the risks of small bowel obstruction
Discussion

• Surgical advances may alter true risk
 • Single-incision laparoscopy
 • Natural Orifice Transluminal Endoscopic Surgery (NOTES)
 • Robotic surgery

• Other risks that are not in the model:
 • Risk of abdominal wall hernias
 • Physiologic changes with spaceflight
 • Effectiveness of conservative treatment
Additional Considerations

• Ethics
 • Prophylactic surgery itself is not without risks
 • Surgery could lead to disqualifying complication
 • Crewmember autonomy vs. pressure to comply

• NASA is obligated to minimize as many risks as possible

• Changes to policy?
 • Agreement/participation of partner countries?
Summary

• Acute Appendicitis and Cholecystitis may threaten crew health

• Prophylactic surgery does not justify risks at this time

• Future surgical techniques may negate risks of SBO

• Addressing uncertainty range in input data, and applying newest version of IMM may addresses model limitations
Acknowledgements

Integrated Medical Model Team
- Eric Kerstman, MD, MPH
- Marlei Walton, PhD, MSE
- David Reyes, MD, MPH, MS
- Lynn Boley, RN
- Lynn Saile, RN
- John Arellano, PhD
- Jerry Myers, PhD

Aerospace Medicine Clerkship Coordinators
- Jennifer Law, MD, MPH
- Elisca Hicks
Thank you!

• Carroll, D., et al., *A Risk-Benefit Analysis of Prophylactic Surgery before Extended-Duration Spaceflight*, In-Preparation, to be submitted to AMHP, May 2017

Questions?
Results - EVAC and LOCL Probabilities

<table>
<thead>
<tr>
<th>DRM</th>
<th>EVAC*</th>
<th>EVAC 95% CI</th>
<th>LOCL*</th>
<th>LOCL 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.1768</td>
<td>0.1745 - 0.1792</td>
<td>0.0241</td>
<td>0.0232 - 0.0251</td>
</tr>
<tr>
<td>LA</td>
<td>0.1839</td>
<td>0.1814 - 0.1862</td>
<td>0.0233</td>
<td>0.0223 - 0.0242</td>
</tr>
<tr>
<td>LC</td>
<td>0.1804</td>
<td>0.1780 - 0.1828</td>
<td>0.0247</td>
<td>0.0238 - 0.0257</td>
</tr>
<tr>
<td>LA + LC</td>
<td>0.1878</td>
<td>0.1854 - 0.1902</td>
<td>0.0239</td>
<td>0.0230 - 0.0249</td>
</tr>
</tbody>
</table>

* Probability of one or more events