Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (iSAT)

Presented at the Joint Army-Navy-NASA-Air Force (JANNAF)
11th MSS / 9th LPS / 8th SPS / Joint Subcommittee Meeting

December 5, 2016

Maria Choi

NASA Glenn Research Center
maria.choi@nasa.gov

Distribution Statement A: Approved for public release; distribution is unlimited.
Using Iodine for Hall-Effect Thrusters (HETs)

• Iodine has been identified as an attractive alternative propellant to Xe for HETs
 – High storage density (2-3 times of Xe)
 – Efficient ionization (lower ionization potential, higher ionization cross section than Xe)
 – Similar mass for I and larger mass for I\(_2\) than Xe
 – Comparable performance to Xe with higher T/P ratio at higher power operating condition

• A dearth of detailed knowledge of physical processes occurring in the plume

• Critical risk: High reactivity
 – Concern for spacecraft system integration
OBJECTIVE

• Simulate the iodine plasma plume generated by BHT-200 Hall thruster and its interaction with the spacecraft body/solar array in the iSAT
OVERVIEW OF NUMERICAL MODEL

• 3-D Hybrid-particle code, DRACO, developed at AFRL
 – Particle-in-cell (PIC) combined with Monte Carlo Collision (MCC)
• Quasi-neutrality
• Boltzmann relation with a polytropic temperature model:
 \[
 \phi = \phi_r + \frac{k_B T_{e,r}}{e} \left(\frac{\gamma}{\gamma - 1} \right) \left[\left(\frac{n_e}{n_{e,r}} \right)^{\gamma - 1} - 1 \right]
 \]
Neutral-neutral: Momentum-exchange (MEX)
 – Variable Hard-Sphere model

Ion-neutral: Momentum- and charge-exchange (CEX)
 – Semi-empirical models based on measurements

For iodine, CEX collision is also important in a Hall thruster plume
 – Consider: I-I⁺, I₂-I⁺, and I₂-I₂⁺
 • I₂-I⁺, and I₂-I₂⁺ available from measurement¹
 • I-I⁺ calculated using Sakabe’s formula²

• Verify Sakabe’s formula using Xe-Xe\(^+\) data by Miller
Collision Cross Section Models (3)

\[
\sigma_{CEX} = A - B \log(E)
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe-Xe⁺</td>
<td>87.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Xe₂-Xe</td>
<td>45.7</td>
<td>8.9</td>
</tr>
<tr>
<td>I₂-I⁺</td>
<td>66.0</td>
<td>4.7</td>
</tr>
</tbody>
</table>

\[
\sigma_{CEX}(I⁺,I₂) = c₁ \log^3(E) + c₂ \log^2(E) + c₃ \log(E) + c₄
\]

\[
c₁ \quad c₂ \quad c₃ \quad c₄
\]

\[
\begin{array}{cccc}
-0.47 & 3.5 & -9.0 & 82.0 \\
\end{array}
\]

\[
\sigma(v) = [A - B \log_{10}(v)] \left(\frac{\varepsilon_I}{\varepsilon_{I₀}}\right)^{-1.5}
\]

\[
A = 1.81 \times 10^{-14} \\
B = 2.12 \times 10^{-15} \\
\varepsilon_{I₀} = 13.6 \text{ eV}
\]
SURFACE & VOLUME MESH

Create the geometry & surface meshing in Cubit

Create the volume mesh using Volcar
Parameters Used for Simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Xenon</th>
<th>Iodine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge voltage (V)</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Discharge current (A)</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>Anode mass flow rate (mg/s)</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>Cathode mass flow rate (mg/s)</td>
<td>0.098</td>
<td>0.096</td>
</tr>
<tr>
<td>Mass (propellant) utilization efficiency</td>
<td>0.981</td>
<td>0.853</td>
</tr>
<tr>
<td>Ion mass flow rate (kg/s)</td>
<td>8.24E-07</td>
<td>6.99E-07</td>
</tr>
<tr>
<td>Species temperature (K)</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

• Use HPHall source to provide particle information
• Compare with measurement by Nakles (2007)
 – Facility backpressure: 5×10^{-6} Torr $\approx 1.6 \times 10^{17} \, m^{-3}$
COMPARISON WITH EXPERIMENTAL DATA

- Generally good agreement
SIMULATION OF IODINE PLUME (1)

• Additional reactions due to molecular species (I_2, and I_2^+)
 – Including dissociative ionization, electron attachment, and inelastic energy exchange

• Accurate modeling requires these processes to be implemented in the model
 – However, the goal is to provide a first-order approximation of the iodine particle flux on spacecraft surfaces using the numerical tools available to us at this stage

• Atomic iodine species (I, I^+, and I^{2+}) are simulated using the HPHall

• Molecular species are introduced at the discharge channel exit assuming Maxwellian velocity distributions.
Simulation of Iodine (2)

- Use iodine mole fraction measurement and mass utilization efficiency 85.3% to calculate I_2 and I_2^+ mass flow rates
 - Assumed 10% of the total neutral flow is I_2

<table>
<thead>
<tr>
<th>Species</th>
<th>Mole Fraction, Xe</th>
<th>Mole Fraction, I</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_2^+</td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td>Xe^+, I^+</td>
<td>0.975</td>
<td>0.953</td>
</tr>
<tr>
<td>Xe^{2+}, I^{2+}</td>
<td>0.021</td>
<td>0.015</td>
</tr>
<tr>
<td>Xe^{3+}, I^{3+}</td>
<td>0.004</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Xenon vs Iodine

- Similar result between Xe vs. I
ESTIMATE OF IODINE FLUX ON SURFACE

- Fluxes decrease away from the thruster in general
- Higher flux on outer edge of the front surface of s/c body and solar array
- Highest total iodine flux on the solar array: $4.5 \times 10^{16} \text{ m}^{-2}\text{s}^{-1}$
- Deposition per unit area: 0.34 mg/cm2 over the entire thruster operation duration assuming 100% deposits

Neutral Number Flux (m$^{-2}$s$^{-1}$)

Ion Number Flux (m$^{-2}$s$^{-1}$)
SUMMARY & CONCLUSIONS

• Verified the model using Xe data
• Simulated iodine plume with the mass flow rates based on experimental data
• Deposition per unit area: 0.34 mg/cm² over the entire thruster operation duration assuming 100% deposits
• In reality, only some portion of iodine colliding with the surface may chemically react with the surface
• How many particles actually react to or reflect off the surface will depend on the surface properties of the solar panel
• For more physically accurate simulation of iodine plasma plume, one needs to model the detailed reactions, especially the dissociative ionization
ACKNOWLEDGEMENT

• NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center