Flow and noise from septa nozzles

Khairul Zaman and James Bridges
NASA Glenn Research Center, Cleveland, OH 44135

SciTech 2017 Conference
Dallas, January 10, 2017

Supported by
Advanced Air Transport Technology (AATT) Project
Advanced Air Vehicles Program
Outline of talk:

Introduction

Experimental Facility

Results and Discussion

Summary
Distributed Propulsion
(From Felder, Kim & Brown 2009)

In one (hybrid) version of the concept each passage is driven by an electric fan

Concern about impact on noise. Will noise be greater than that from a equivalent single jet?
Scope of the paper:

To study some of these aero- and acoustic issues with distributed propulsion, experiments have been conducted at NASA GRC

This paper presents results of a smaller-scale fundamental experiment on the problem
Experimental Facility

Open Jet rig (CW17)

Close-up view of nozzle and HW

- Up to about 70 psig allowed
- Microphones overhead
- 8:1 rectangular nozzle
 (5.34” x 0.66“; D=2.12”)
- Inserts made by 3-D printing
Internal geometry
Top: ‘Fsh3’ has rectangular-circular-rectangular passage
Bottom: ‘6Rec’ has rectangular passage throughout

-Many other septa geometries are examined for maximum noise reduction
Septa Insert Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fsh3</td>
<td>Septa TE flush with nozzle exit (rect-circ-rect passage)</td>
</tr>
<tr>
<td>Fsh0</td>
<td>Duplicate of Fsh3</td>
</tr>
<tr>
<td>Insd</td>
<td>Septa TE stops 0.25" upstream of exit</td>
</tr>
<tr>
<td>OutF</td>
<td>Full-width TE protrudes out by 0.175"</td>
</tr>
<tr>
<td>Sclp</td>
<td>Semi-circular cut-out (scallopin at septa TE</td>
</tr>
<tr>
<td>6Rec</td>
<td>Same as Fsh0 or Fsh3 except rectangular passage</td>
</tr>
<tr>
<td>Dsn5–10</td>
<td>Same as Fsh0 or Fsh3 except passages are non-uniform</td>
</tr>
</tbody>
</table>

![Fsh3](image1.png) ![Insd](image2.png) ![OutF](image3.png)
NASA Glenn Research Center

SPL Spectra comparison at two jet Mach numbers

\[\theta = 90^\circ; \text{mic on broadside of nozzle} \]

Fsh3 vs Bsln

6Rec vs Fsh3

Lower noise on low frequency end for the Fsh case. Not accounted for by exit area reduction (11% smaller \(D \Rightarrow 1.3 \text{ dB} \))

Noise reduction with 6Rec case not as much
SPL Spectra comparison at two M_j

Noise reduction with Fsh3 is best so far
SPL Spectra comparison at two M_j

Fsh3 vs Sclp

- SPL (dB), pairs staggered
- f (kHz)

Fsh3 vs Fsh0

- SPL (dB), pairs staggered
- f (kHz)

Noise reduction with Sclp and Fsh0 about same as that with Fsh3
U contours at $x/D=2$; $M_j = 0.265$

Hot-wire data

Fsh3: rectangular-circular-rectangular passage
6Rec: rectangular passage thru

Note only 5 cells for Fsh3 case but 6 cells still discernible for 6Rec case
Similar patterns
U contours at $x/D=2$; $M_j = 0.265$

Fsh3 and Fsh0 are supposed to be identical

There is pairing activity with Fsh0 leading to asymmetric flow
U contours at $x/D=2; \quad M_j = 0.90$

Pitot surveys

The flow patterns are the same (independent of compressibility effect)
Flow evolution Fsh3 case; $m_j = 0.265$

Streamwise vortex pairs at ends of each of 5 septa (partitions) causes the observed pattern.
Flow evolution Fsh0 case; $M_j = 0.265$

There is further interaction among Streamwise vortices
Difference in dimensions of Fsh3 and Fsh0 cases

 Optical method using ‘Smartscope’

<table>
<thead>
<tr>
<th>Passage</th>
<th>S1</th>
<th></th>
<th>S2</th>
<th></th>
<th>d</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fsh0</td>
<td>Fsh3</td>
<td>Fsh0</td>
<td>Fsh3</td>
<td>Fsh0</td>
<td>Fsh3</td>
</tr>
<tr>
<td>1</td>
<td>0.866</td>
<td>0.862</td>
<td>0.817</td>
<td>0.828</td>
<td>0.855</td>
<td>0.854</td>
</tr>
<tr>
<td>2</td>
<td>0.858</td>
<td>0.877</td>
<td>0.828</td>
<td>0.828</td>
<td>0.855</td>
<td>0.853</td>
</tr>
<tr>
<td>3</td>
<td>0.866</td>
<td>0.842</td>
<td>0.829</td>
<td>0.827</td>
<td>0.855</td>
<td>0.854</td>
</tr>
<tr>
<td>4</td>
<td>0.874</td>
<td>0.873</td>
<td>0.829</td>
<td>0.828</td>
<td>0.855</td>
<td>0.855</td>
</tr>
<tr>
<td>5</td>
<td>0.863</td>
<td>0.843</td>
<td>0.815</td>
<td>0.827</td>
<td>0.856</td>
<td>0.854</td>
</tr>
<tr>
<td>6</td>
<td>0.872</td>
<td>0.879</td>
<td>0.829</td>
<td>0.827</td>
<td>0.854</td>
<td>0.853</td>
</tr>
</tbody>
</table>

(#3) 2.8% max difference

Not much help in pinpointing cause of the difference in flow
Flow evolution Dsn9 case; $M_j = 0.265$

Width at exit (S2) and diameter (d) varied

Flow field similar to Fsh0 case was finally realized
CFD mean flow evolution Dsn9 case; $M_j = 0.27$

(CFD package with Solidworks)

Similar flow fields as in the experiment
(also good agreement for Fsh3 case)
Detailed flow field for Fsh3 at x/D=2; $M_j = 0.265$

Two X-wire measurements

u' larger than v' (or w'). Streamwise vortex pairs at ends of septa.
Conclusions

Nozzle with septa is quieter than corresponding baseline nozzle.

Apparently, noise reduction occurs due to introduction of streamwise vortices in the flow. These vortices are produced by secondary flow within the septa passages.

For the flush case, six cellular flow structures readjusts to produce five regions of high-speed flow by the action of ω_x-pairs.

Small difference in fabrication of the flush case causes vortex pairing activity leading to an asymmetric flow structure.

By intentionally varying the dimensions of the flush case the latter flowfield could be reproduced.

Lesson: the streamwise vortices and hence the flow and noise from the jet are quite sensitive to the septa geometry.
SPL Spectra Flsh vs Baseline at other angular locations; $M_f=1$

Flsh case exhibit similar noise reduction at other azimuthal (ϕ) and polar (θ) locations.
SPL Spectra data measured in the AAPL
Flsh vs. Baseline cases; $M_j=0.99$

Observation in CW17 is confirmed by accurate data taken in the AAPL

Carpet plot of PSD
Broad side ($\phi=0^\circ$)
24 θ locations

Direct comparison at $\phi=0^\circ$, $\theta=90^\circ$