The velocity and density distribution of Earth-intersecting meteoroids: implications for environment models

Althea Moorhead, Bill Cooke
NASA Meteoroid Environment Office, MSFC

Peter Brown, Margaret Campbell-Brown
University of Western Ontario

Danielle Moser
Jacobs, ESSSA Group, MSFC

Rhiannon Blaauw
All Points Logistics, Jacobs ESSSA Group, MSFC
Damage done by a meteoroid impact depends on:

- mass
- velocity
- density
- impact angle

We are revisiting each of these components for the next version of our Meteoroid Engineering Model (MEM).
Meteor ionization increases with speed, and does not occur below $v_0 \sim 9 \text{ km s}^{-1}$.

Detections are complete to smaller masses at higher v.

We use the Jones ionization efficiency\(^1\) to de-bias the radar meteor speed distribution efficiency\(^2\)

\(^1\)Jones, 1997; Thomas et al., 2016
\(^2\)Moorhead et al., 2017
Velocity distribution de-biasing

Relative flux

- Raw distribution
- Brown et al. (2004)
- Moorhead et al. (2017)

v (km s$^{-1}$)
Velocity distribution sharpening

Measurement uncertainty has a blurring effect

- ionization-limited
- mass-limited

Relative flux vs. velocity graphs showing the effect of correction on observed data.
- We use meteor showers to characterize our observation "filter" ...
Next, we invert it (solve the $N \times N$ system of equations) to obtain the sharpened distribution.

Hyperbolic meteors disappear naturally.
Velocity distribution sharpening
Sharpening the de-biased distribution

![Graph showing velocity distribution sharpening](image-url)
Densities can be constrained by ablation modeling3, but there are few measurements to work with.

We looked for a density proxy:

- K_B was a poor proxy in all data sets examined
- T_J was a good proxy for one data set4

3Campbell-Brown & Koschny, 2004; Borovička et al., 2007
4Kikwaya et al., 2011
We fit log-normal distributions to the two density groups:

- $T_J < 2$ – HTCs, NICs – apex and toroidal
- $T_J > 2$ – JFCs, asteroids – helion/antihelion
Density de-biasing

Observations

- Density does not affect peak brightness (L); denser meteors simply peak at lower heights (see plot).
- Thus, no significant density bias in observations.
Density de-biasing
Numerical simulations and spacecraft impacts

- Impact crater depth \(\text{does depend on } \rho \):
 \[
 \text{depth} \propto \rho^{4/27}
 \]

- Ratio of radiation pressure to gravity also depends on \(\rho \):
 \[
 \frac{F_r}{F_g} \propto \rho^{-2/3}
 \]

- Density affects the conversion of \(\beta \)-limited to mass-limited distributions, or mass-limited to crater-limited distributions.
Meteoroid directionality
Crater-limited, de-biased
We have revisited the velocity distribution and density distribution used by meteoroid environment models.

Our velocity distribution is:
- derived from radar (CMOR) observations,
- de-biased using modern ionization efficiency, and
- sharpened to remove uncertainty smoothing.

Our density distribution is based on Kikwaya et al. (2011). K_B was not well-correlated with ρ in any data set we examined.

38% of radar meteors are associated with the helion/antihelion sources. After de-biasing, we find that up to 93% of craters are associated with these sources.