Exoplanet Biosignatures Workshop

The search for life beyond our Solar System motivates future exoplanet missions to observe for biosignatures with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, stellar processes and interactions, and evolutionary history may work to enhance, suppress or mimic these biosignatures. Thus biosignature science is inherently interdisciplinary: it requires knowledge of the processes that produce observable biosignatures, the processes that produce them, and the minimum biomass required for a given atmospheric signature.

The workshop activities have culminated in five review papers on the science and technology of remote biosignatures for life on exoplanets. Broad participation was solicited for these papers, which will serve as an interdisciplinary, educational, state of the reference use across a wide community. Community comments are invited in May 2017 at: nексss.info.

Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

Contact: Edward Schwieterman, edward.schwieterman@ucr.edu

This paper provides an in-depth review of current understanding of potential exoplanet biosignatures including gas-phase and surface features, and we focus particularly on advances made since the review by Des Marais et al. (2002). This paper does not propose new biosignatures strategies, but reviews currently existing literature to provide a foundation for a path forward. We survey some biogenic spectral features that are well-known in the specialist literature but not yet robustly detected in exoplanet biosignatures. We also briefly review advances in assessing biosignature plausibility, including novel methods of determining chemical disequilibrium and the minimum biomass required for a given atmospheric signature.

Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

Contact: Victoria S. Meadows, victoria.meadows@uwashington.edu

O2 remains our most robust biosignature. However, possibilities for false negatives exist, as on the early Earth when accumulation of biogenic O2 in the atmosphere was delayed by at least a billion years. Possibilities for false positives also have been uncovered through computer modeling of mechanisms for abundant O2 in the absence of a biosphere. We review past and current biosignature research to detail the story of O2 as a specific example of how life is a function of and modifies its planetary environment, and how we would use remote-sensing observations to search for biosignatures in the near term. In addition, we discuss current knowledge of specific photometric, spectrophotometric, and time-dependent observations of environmental context that could be made by future observatories to identify O2 as a biosignature, and discriminate it from potential false positives.

Exoplanet Biosignatures: A Framework for Their Assessment

Contact: David Catling, dcatling@uw.edu

We present a general scheme for observing potential exoplanet biosignatures and guiding and expressing confidence levels for positive detection of life. An appropriate framework uses models with data (in the form of exoplanetary system proxies and simulated or photometric data) to find the Bayesian likelihoods of those data occurring if the exoplanet has or does not have life. The latter includes the case of false positives, i.e., where abiotic sources mimic biosignatures. Prior knowledge (including all factors that influence habitability and previous exoplanet observations) would be combined with the likelihoods to arrive at the probability of life existing on a given exoplanet given the observations.

Exoplanet Biosignatures: Observational Prospects

Contact: Yuka Fuji, yuka.fuji.ebbaru@gmail.com

We provide an overview of the observational prospects for biosignature detection and general characterization of temperate Earth-like planets. We summarize what kind of key planetary properties may become observable as the new facilities come on line, reviewing the planned space-based and ground-based projects as well as the methodologies those projects will employ. We discuss reasonable expectations for the first constraints on spectroscopic features of atmospheres (and perhaps surfaces) of transiting and non-transiting planets obtained before 2030 versus more detailed searches and/or larger surveys to address statistical questions such as the occurrence rate of habitable environments, to be planned beyond 2030. The broad outlook which this paper presents is useful in developing the methodologies to assess the possibility of biosignatures based on what we can observe.

Acknowledgments: Mary Voytek, NASA Nexus for Exoplanet System Science

Penny Boston, Carl Pilcher, NASA Astrobiology Institute

NExSS/NAI JOINT ExoPAG SAG 16 REPORT ON REMOTE BIOSIGNATURES FOR EXOPLANETS

Nancy Y. Kiang, NASA Goddard Institute for Space Studies, Nancy.Y.Kiang@nasa.gov

Mary Nicole ("Niki") Parenteau, NASA Ames Research Center, mary.n.parenteau@nasa.gov

Shawn Domagal-Goldman, NASA Goddard Space Flight Center, shawn.goldman@nasa.gov

http://nexss.info/community/workshops/exoplanet-biosignatures-workshop

The workshop focused around three goals:

1. State of the Science Review: What are known remotely-observable biosignatures, the processes that produce them, and their known non-biological sources?

2. Advancing the Science of Biosignatures: How can we develop a more comprehensive conceptual framework for identifying additional biosignatures and their possible abiotic mimics?

3. Confidence Standards for Biosignature Observation and Interpretation: What paradigm informed by both scientists and technologists could establish confidence standards for biosignature detection?

To ensure accessibility for contribution by as many of the international community as possible, workshop activities included 5 online videoconference sessions for interactive review of the State of the Science preliminary to an in-person meeting in Seattle, WA, including remote dial-in. Participants spanned astronomy, planetary science, Earth sciences, heliophysics, biology, instrument/mision development, and engineering from around the world.

All talks and Seattle sessions may be streamed online at the workshop website above.