A Planetary Defense Gateway for Smart Discovery of relevant Information for Decision Support

Myra Bambacus/GSFC & Chaowei Phil Yang/GMU

Ronald Y. Leung, Brent Barbee, Joseph A. Nuth, and Bernie Seery
NASA Goddard Space Flight Center (GSFC)

Yongyao Jiang, Han Qin, Yun Li, Manzhu Yu, Mengchao Xu
George Mason University (GMU)

David S. P. Dearborn
Lawrence Livermore National Laboratory

Catherine Plesko
Los Alamos National Laboratory
• Background
• Framework architecture
• Current results
• Ongoing research
• Conclusions
Planetary Defense (PD)

- Near Earth object (NEO) observation
- Design reference asteroids
- Impact modelling
- Decision support
- Mitigation action

In this U.S., the NASA Planetary Defense Coordination Office (PDCO) was established in 2016 to study the mitigation of potential Near-Earth Object (NEO) impacts to our home planet.

Motivation for an Information Framework

- Information about detecting, characterizing and mitigating NEO threats is dispersed (e.g. publications, briefings.)

- An overall architecture to facilitate the collaborations and integrate the different capabilities to achieve the most sensible, executable options for mitigation

- A cyberinfrastructure to capture mitigation trades, analyses, model output, risk projections, and mitigation mission design concepts

- Discovery and easy access to knowledge and expert opinion within the project team, as well as factoring in related information from other research and analysis activities
Why Another Resource Discovery Engine?

• Domain-specific vs. general-purpose

• Indexed content
 – Google searches from nearly the entire Internet
 – The framework is PD-specific

• Knowledge base
 – Google’s Knowledge Graph is based on generic sources such as Wikipedia
 – The framework will create a PD ontology aided by domain experts, combined with machine learning and Natural Language Processing (NLP) results

• Decision makers can have easy access to required information and quality knowledge
Design Reference
Asteroids
Orbit and Physical Structure Design
Goddard Space Flight Center
MIT Lincoln Laboratory
Sandia National Laboratories

NEO Impact Modeling
Physics Based Models & Variation Analyses
Los Alamos National Laboratory
Lawrence Livermore National Laboratory
NASA Goddard Space Flight Center

Decision Support
Mission Design and Assessment & Risk Analysis
NASA
FEMA

Project Organizational Collaboration

Big Data Discovery, Simulation, Analytics, and Access

Hybrid Cloud Computing

Big Data Processing

Computing Foundation

NEO Mitigation
Planetary Defense

Architectural Framework

List is not exclusive

Planetary Defense

NEO Observation
- Radar and Space Detection
 - NASA
 - JPL
- Trajectory Analysis/NEO Obitz Estimation
 - JPL

Design Reference
- Asteroids
 - Orbit and Physical Structure
 - Design
 - Complete Description

NEO Characterization
- Complete Characterization
 - Sandia National Laboratories
 - Lawrence Livermore National Laboratory

NEO Impact Modeling
- Physics Based Models & Variation Analyses

Mitigation Action
- Decision Support
 - Mission Design and Assessment & Risk Analysis

Big Data Management, Simulation, Analytics
- Hybrid Cloud Computing
 - Amazon Web Services
 - Microsoft Azure
 - Eucalyptus

Playbook
- Standard Interface
Information Flow

1. NEO Observations
 - NEO
 - Radar Observations & Space Detection
 - NEO Data Bases
 - Trajectory Analysis
 - Analyzed NEO physical properties: Diameter, Spin State, Mass, Orbit
 - Meteoritic Samples
 - Precursors
 - Detected NEO Physical & Chemical Properties
 - NIF Trident
 - Equation of State

2. Design Reference Asteroids
 - DRA 1, 2, 3, ..., i

3. Model NEO Impact
 - Physical Based Models
 - Model Outputs:
 - Energy Deposition
 - Hydrodynamics
 - Radiative Transport
 - Shock Wave Propagation
 - Momentum Enhancement
 - Variational Analysis
 - Earth Impact Fragment Effects
 - Radiation & Blast Effects
 - Kinetic Impactors/NEOs Device Parameters

4. Decision Support
 - Mission Designs:
 - Trajectory
 - Launcher Performance
 - Time to Impact
 - ...
 - Effectiveness & Risk Assessment
 - Mission Assessment Results:
 - Shortest Time
 - Cost Parametrics
 - Participants
 - Pareto Frontier

5. Mitigation Action
 - Mitigation Decision Support Playbook
Knowledge Discovery & Usage Framework

Knowledge Base
- Domain-specific knowledge base
- Special Index
- Content Index

Analytics
- Name entity recognition (NER)
- Relation extraction (RE)
- Summarization
- Topic modeling
- Profile mining
- Link analysis

Data System
- Data management
- Data access
- Security
- Operation

Sources
- Web pages
- Documents
- Access logs

Repositories

Upload
Generate

Crawling

Query

Gateway
Planetary defense (PD) Framework Gateway

- User management, document archiving, vocabulary editing, web crawling, search engine
User management

• User roles: Administer, authenticated user, anonymous user
• Manage access control with permissions and user roles
• Assign permissions and roles to users
• Ban an IP address - The Ban module allows administrators to ban visits to their site from individual or a range of IP addresses.
FileDepot Module: File/document Management

- Create folders or upload new files
- More actions:
 - Set permissions of specific folder for different user roles
 - Text mining will be performed to find the relations between documents (keywords)
Vocabulary editing module

- 130+ concepts
- Create and edit landing page for each concept
- Different user roles have different permissions
• Nutch: Open Source web crawler
• Store them in Elasticsearch (full-text search engine)
• 5 seed URLs
• Similarity between page vs. vocab list
• Baseline
Ongoing research

- Domain specific crawling
- Knowledge extraction from plain text
Domain specific crawling

Simplest approach: filter web pages using a **keyword list** (e.g. NEO, asteroid, Bennu, ...) composed by domain experts.

Problems:
- Expensive
- Difficult to exhaust
- Difficult to assign weights to different keywords
- Treat all web pages equally (a page on NASA website and a random one)

Domain specific crawling

Existing tools in Open Source crawler (e.g. Nutch):

• Link-based
 – Scoring links (OPIC, PageRank scoring)
 – Breadth first or Depth first crawl

• Content-based
 – URL, mimetype filter
 – Cosine Similarity scoring filter (what we are using)
 – Naive Bayes parse filter

Image source: https://en.wikipedia.org/wiki/PageRank
Proposed method

- **Combine** content and link-based scoring to boost the authoritative and relevant web pages.
- **Dynamically** update/grow the vocab using info (e.g., title) from the web pages.
- **Weight** keywords based on frequency clustering (i.e., more frequently seen terms have more weights).

Engage the community to help with the evaluation.
Knowledge extraction from plain text

- **Goal:** Extract structured information from unstructured web pages and user uploaded documents

- **Relation extraction** in NLP: finding semantic triples (SPO) from sentences

 The UV Index is a measure of the intensity of UV rays from the Sun.

 - **Subject**
 - **Predicate**
 - **Object**

- **Pattern-based, supervised, semi-supervised, and open information extraction**
Relation extraction

Hand-written patterns

- “Y such as X”
- “such Y as X”
- “X or other Y”
- “Y including X”

- + Tend to be high-precision
- + Tailored to specific domains
- - Human patterns are often low-recall
- - Hard to be exhaustive
Open Information Extraction

- Recently published by Univ. of Washington
- Extract relations from the sentences with no training data, no list of relations (unsupervised)
- Self-learning process, syntactic and lexical/semantic patterns

The U.S. president Barack Obama gave his speech on Tuesday to thousands of people.

(Barack Obama, is the president of, the U.S.)
(Barack Obama, gave, his speech)
(Barack Obama, gave his speech, on Tuesday)
(Barack Obama, gave his speech, to thousands of people)

<table>
<thead>
<tr>
<th>Entity</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>the GHR SST</td>
<td>is</td>
<td>a truly international project with over $18 Milllion USD</td>
</tr>
<tr>
<td>Jason-1</td>
<td>has</td>
<td>a repeat period of approximately 10 days with 254 passes per cycle</td>
</tr>
<tr>
<td>Jason-3</td>
<td>is</td>
<td>capable of measuring significant wave height, sigma naught (sigma0), dry and wet troposphere</td>
</tr>
<tr>
<td>The Aquarius instrument</td>
<td>has</td>
<td>3 radiometer beams in push-broom alignment with footprint resolutions of 76 km</td>
</tr>
<tr>
<td>Jason-3</td>
<td>has</td>
<td>a repeat period of approximately 10 days with 254 passes per cycle</td>
</tr>
<tr>
<td>Jason-1</td>
<td>is</td>
<td>capable of measuring significant wave height, sigma0, dry and wet troposphere and ionos</td>
</tr>
<tr>
<td>Level-2 data</td>
<td>refer</td>
<td>to monthly estimates of spherical harmonic coefficients of the Earth gravity field</td>
</tr>
<tr>
<td>no downlink signal</td>
<td>was detected</td>
<td>At the beginning of the next contact at 0249 UTC</td>
</tr>
<tr>
<td>sensors</td>
<td>included</td>
<td>a CTD at the near-surface and another at 6 m depthFor SPURS-1</td>
</tr>
</tbody>
</table>

- Some are reasonable, some are noise
- Working on reducing noise/identifying reasonable results
Conclusion and Next Steps

• The proposed architecture framework benefits the PD community by
 – Providing discovery and easy access to the knowledge and expert opinion within the project team
 – Maximizing the linkage between different organizations, scientists, engineers, decision makers, and citizens

• Next steps
 – Develop a knowledge base & search ranking for NEO mitigation resources
 – Investigate a knowledge reasoning model for potential mitigation by assimilating existing scenarios
 – Build a 4D visualization tool based on new datasets and existing tools
References

• Wu, L. and Brynjolfsson, E. 2013. The future of prediction: How Google searches foreshadow housing prices and sales. Available at SSRN 2022293.