Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

Brent W. Barbee
NASA/GSFC
brent.w.barbee@nasa.gov

Kevin C. Greenaugh
NNSA - DOE
kevin.greenaugh@nnsa.doe.gov

Bernard D. Seery
NASA/GSFC
bernard.d.seery@nasa.gov

Myra Bambacus
NASA/GSFC
myra.j.bambacus@nasa.gov

Ronald Y. Leung
NASA/GSFC
ronald.y.leung@nasa.gov

Lee Finewood
NNSA - DOE
lee.finewood@nnsa.doe.gov

David S. P. Dearborn
LLNL
dearborn2@llnl.gov

Paul L. Miller
LLNL
miller3@llnl.gov

Robert P. Weaver
LANL
rpwe@lanl.gov

Catherine Plesko
LANL
plesko@lanl.gov

Megan Bruck-Syal
LLNL
syal1@llnl.gov

PDC 2017 - May 15-19, 2017 - Tokyo, Japan

Acknowledgments: This research was supported by NASA ROSES grant NNH14ZDA001N-SSO, and is a US government interagency collaborative effort with contributions from additional personnel beyond the authors: Joseph A. Nuth, Luke D. Oman, Keith S. Noll, William M. Farrell (NASA/GSFC); Kirsten M. Howley, Megan Bruck Syal, J. Michael Owen, Joseph V. Wasem, Eric B. Herbold, Robert A. Managan, Souhel M. Ezzedine, Damien C. Swift (LLNL); Galen R. Gisler, James Ferguson (LANL); Mark B. Boslough (Sandia National Laboratory); and Phil Yang (George Mason University).

The research program is organized around three case studies:

1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36) [OSIRIS-REx mission target]
2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target]
3. Deflection of a scaled-down version of the comet 67P/Churyumov-Gerasimenko [Rosetta mission target]

NASA/GSFC is providing astrodynamics and spacecraft/mission design expertise, while NNSA/DOE/LLNL/LANL/SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

Our research is oriented toward defining solution spaces for the problem of responding to incoming asteroid/comet scenarios with relatively short time available to respond (e.g., <10 years)

Current preliminary findings:

* Existing nuclear devices appear to be effective for Planetary Defense purposes.
* Good agreement is seen between different modeling codes at the different laboratories.
* A single ~8 metric ton HAMMER-like kinetic impactor is not sufficient to deflect a Bennu-class (>500 m) asteroid.
* A single ~8 metric ton HAMMER-like kinetic impactor may be capable of deflecting asteroids ~100--300 m in size or smaller, depending on factors including asteroid density and orbit.
* However, asteroids smaller than ~100--200 m in size may not be able to physically tolerate the imparted velocity change required to deflect them. Attempting to deflect them may be likely to accidentally weakly disrupt them, in which case deliberate robust disruption may be preferred.
* Short time response is particularly relevant to cometary nuclei (most energetic, lowest lead time Earth impact threats). In any case, short time response will require prior testing and validation of Planetary Defense spacecraft systems, as well, as taking steps to dramatically reduce the time needed to prepare the spacecraft for launch.