Airspace Technology Demonstration 2 (ATD-2)

Surface Scheduling and Metering Concept

Joint Workshop for KARI-NASA Research Collaboration

May 23 - 25, 2017
• **Background/ top-level design**
• Data exchange and integration
• Surface modeling
• Capacity estimation
• Surface scheduling
• Surface metering
• Summary
Phase 1: Baseline IADS Demonstration

Phase 1 Demonstration Goals

- Evaluate the Baseline IADS capability
- Enhance American Airlines CLT “departure sequencing” procedure with ATD-2 surface tactical metering
- Demonstrate improved compliance for a significant percentage of tactical TMIs
- Mature strategic Surface CDM capability via operational use, analysis, and feedback
- Reduce ATCT workload by replacing paper strips with EFD

Interfaces to external systems via SWIM plus ATD-2 SWIM extensions

★ = IADS user interface
3T Data Exchange & Integration

- Integrated Arrival/Departure/Surface (IADS) footprint
- Onramp to the overhead stream (TFDM with IDAC)
- New data shared between FAA & Industry
- TFDM Electronic Flight Data (EFD) integration
- Real-time dashboard for situational awareness
- Use of controller assigned runway and time on surface

Surface modeling, scheduling & metering

- Trajectory based model of airport operations
- Latest predictions of flight scheduled out/off/on/in
- Scheduling for tactical and strategic timeframes
- Surface Collaborative Decision Making (S-CDM)
- Predictive capacity estimation technology
Working our Way Up the S-CDM Pagoda

Procedures, Roles and Responsibilities

- Surface Metering
- Surface Scheduling
- Surface Modeling
- Surface Surveillance

Data Exchange and Integration

Departure Reservoir Management
• Background/ top-level design
• **Data exchange and integration**
 • Surface modeling
 • Capacity estimation
 • Surface scheduling
 • Surface metering
• Summary
IADS Data Exchange and Integration

Airline Operations

Ramp Controllers

Airport Operations

ARTCC

TRACON

Pilots

ATCT

- Flow Direction
- Runway Utilization
- APREQs/CFRs
- Runway Assignments
- MIT restrictions
- EDCTs
- Grounds Stops
- Runway Closures
- Dep Fix Closures
- Flight Cancellations
- Gate Conflicts
- Ramp Closures
- Long on Board
- Data quality updates

Data Exchange & Integration
Outline

- Background/ top-level design
- Data exchange and integration
- Surface modeling
 - Capacity estimation
 - Surface scheduling
 - Surface metering
- Summary
Surface Modeling

- Performs un-obstructed trajectory predictions based on flight-specific surface routing and gate/runway intent
- Relies on accurate predictions of departure gate and runway assignment
- Relies on accurate gate departure time estimates (based on EOBT or other flight readiness status, e.g., pilot call in)
- Generates arrival predictions by incorporating ON time estimates and landing runway assignment from TBFM
- Surface Modeler output is a combination of truth and predictions
- Provides essential input to surface scheduler
IADS Surface Modeling

The IADS surface modeler combines airport geometry with flight-specific intent and status information to produce continuously-updated 3D \((x,y,t)\) surface trajectories for each flight.

- **Blue lines** are taxiway node link network (i.e., model of airport geometry).
- **White line** is predicted surface trajectory updated every 10 seconds.
- **Flight of Interest**

![IADS Surface Modeling Diagram](image-url)
Surface Modeling: Process Flow

![Diagram showing the process flow for handling flight updates, including events and actions to update various configurations.]

- FlightUpdated
- EventManager
 - FlightUpdateEvent
 - EventManager calls each handler in the order shown
- Update Scheduled Airport Configuration
- Update Departure Fix
- Update Arrival Fix
- Update Gate
- Update Flight State
- Update Runway
- Update Spot
- Update Taxi Trajectory
- Update Spot from Trajectory
- Update Scheduler
- No spot from decision tree

[If Flight data has changed since last run]

- Check every 10 seconds
- Run Scheduler
• Background/ top-level design
• Surface modeling
• **Capacity estimation**
• Surface scheduling
• Surface metering
• Summary
Runway utilization intent from ATC is used to determine the capacity of a bank.

Information used in capacity estimation:
- Use of converging runway
- Arrival crossings
- Mixed/dual use runways
- Meteorological conditions (IMC, VMC)
- Flight separation rules (wake vortex, departure fix)
- Flights subject to FAA restriction (MIT, EDCT, APREQ)
- Runway and taxiway outages
- Arrival ON time and runway information from R-TBFM
East side, mix of arrivals and departures on 18L

West side, departures from 18C

West side, arrivals to 18R

- Insufficient to rely on manual ADR/RDR entry
- Need detailed, frequent capacity estimates that automation can best provide, with limited controller input
Capacity predictions are calculated and automatically used in surface metering calculations without required manual user ADR input.

Helps answer the questions:

- How much runway capacity do I have for a specific flight, on a specific runway, at a specific time given the current runway utilization strategy?
- What queue time/length should this flight expect?
Outline

- Background/ top-level design
- Surface modeling
- Capacity estimation
- **Surface scheduling**
- Surface metering
- Summary
Surface Metering Concept

- Estimates capacity of current and future runway resources
- Builds an efficient runway schedule based on readiness, EOBT and RBS
- Calculates spot advisories that support the metered runway schedule
- Provides push back advisories from gates that support the spot advisories
Surface scheduling first generates target takeoff times (TTOTs) in keeping with previously-estimated capacity constraints.

Spot (TMAT) and push (TOBT) advisories are back-calculated from TTOT using a delay propagation formula.

Via surface metering, target times *throttle demand* to the runway.

Flights with FAA restrictions (APREQ/EDCT) are not subject to surface scheduling/metering for balancing runway capacity and demand.

Surface scheduling at a tactical level requires that flights be handled differently depending on the expected accuracy of their EOBTs.
Surface Scheduling: Order of Consideration

Predictability

<table>
<thead>
<tr>
<th>Uncertain</th>
<th>Planning</th>
<th>Ready</th>
<th>Out</th>
<th>Taxi</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less accurate EOBTs or outside surface scheduling horizon</td>
<td>Accurate EOBTs and within surface scheduling horizon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order of Consideration

- Less: Lower
- More: Higher
Surface Scheduling: How Planning Group Fits In

Planning group challenges:

- Planning is the most challenging category! FSFS used for flights in this group.
- **Without** a planning group to reserve some space, the tactical scheduler could only react to call in order. Thus, flights that call in 10 minutes ahead of scheduled time may take the slot of another flight *dutifully on time* (according to EOBT). This is ripe for gaming especially in a multi-carrier environment.
- **With** a planning group to reserve some space for flights that are dutifully on time and/or priority, pre-departure uncertainty may add unnecessary delay.

<table>
<thead>
<tr>
<th>Uncertain</th>
<th>Planning</th>
<th>Ready</th>
<th>Out</th>
<th>Taxi</th>
<th>Queue</th>
</tr>
</thead>
</table>

- **Very Low** Predictability: Confidence in EOBT below threshold
- **Low-Medium** Predictability: High confidence in provided EOBT
- **Medium** Predictability: Variability in pushback
- **High** Predictability

Inclusion/exclusion criteria for planning group membership is ongoing
ATD-2 developed a scheme for prioritizing intra-airline flights without impacting overall surface efficiency.

Prioritization uses a binary indicator, informed using pre-assigned priority rules for sequencing flights off the runway.

Prioritization algorithm was developed and tested in close partnership with American Airlines.

Sequencing based on priority can be handled automatically without relying on user inputs (manual swapping).

Automated priority handling is more feasible in a tactical timeframe where a simple and rapid process is required.
Outline

• Background/ top-level design
• Surface modeling
• Capacity estimation
• Surface scheduling
• **Surface metering**
• Summary
Surface Metering: Basics

- Surface metering is implemented to balance demand and capacity.
- When surface metering is on, target times from surface scheduler are converted to advisories for throttling demand.
- Through the scheduling process, flights with CTOTs will not get added metering delay (avoids potential for ‘double delay’).
- Carriers can designate certain flights as exempt from metering holds.
- Demand throttle in Phase 1 at CLT is through advisories sent to ramp controllers for pushback instructions to the flight deck:
 - Push now
 - Hold for an advised period of time (in minutes)
- Principles of surface metering can be more generally applied to other airports in the NAS to throttle demand via spot-release times (TMATs).
Surface Metering:
Demand Profile at CLT – Gate OUT / IN Events

- CLT has highly dynamic departure and arrival demand
- Other airports in NAS have similarly dynamic demand profiles
- Need for metering at such airports can be intermittent and must be informed by both departure and *arrival* demand predictions
Surface Metering: Delay Propagation Control by Ramp

- ATD-2 has implemented a single “knob” that allows ramp manager to control how delay is apportioned between surface and gate
- Knob controls maximum metering delay for absorption on taxiways before remaining delay is propagated to the gate
- There are currently three settings for our implementation for CLT
 - **Nominal**: Nominal amount of delay tolerance in the Airport Movement Area (AMA) relative to an unimpeded taxi-out trajectory
 - **Less AMA delay, more gate hold**: Reserves less delay in the AMA for absorption through queueing, resulting in longer gate hold times
 - **More AMA delay, less gate hold**: Reserves more delay in the AMA for absorption through queueing, resulting in shorter gate hold times
- Single ‘knob’ for controlling metering behavior simplifies usage and could help ensure a common implementation of TFDM across the NAS
Surface Metering Process Flow Diagram

1. Generate Demand and Capacity Predictions
 - ATC/TMC Runway Utilization Intent
 - TRACON controller runway intent
 - Highly accurate TBFM de-conflicted ON time estimate
 - TFM SWIM ETAs
 - TMIs. Controlled Take Off Times (CTOT)
 - Carrier provided EOBTs
 - Tactical airline intent (ramp controller)

2. Monitor Surface Demand Capacity Imbalances
 - IADS Automation Assisted Capacity Predictions
 - Surface modeling logic
 - Earliest IN time estimate
 - Earliest OFF time estimate
 - Latest OUT estimate
 - Pushback duration model
 - Ramp and AMA taxi time
 - Hovering logic
 - Scheduling Logic:
 - Converging runways
 - Flight spacing requirements
 - Dual use runways
 - Runway crossing delays
 - Departure fix separation
 - Use of flight state

3. If Surface Metering, Go to Step
4. Enable Metering, Set Hold Level
 - No Metering
 - Departure Sequence Metering
 - Time-Based Metering
 - Level of hold:
 - Less hold
 - Nominal hold
 - More hold

5. Honor TOBT and TMAT advisories
 - TOBT Advisory
 - 6 min
 - AAL705 A321 E
 - BOBZY-SFO
 - CS 9 18C
 - P1856

6. Evaluate Metering Effectiveness
 - TMAT Advisory
 - AAL705
 - A321 E
 - BOBZY-SFO
 - T1941
 - 9 18C
ATD-2 Phase 1 Surface Metering

- Surface metering tool available for the CLT Ramp.
 - Provides advisories for gate hold to meet TOBT and TMAT times.
- Gate Hold recommendations and TMATs are **always shown for TMI flights with controlled take off times** irrespective of metering mode
- The system places flights in groups based on the quality of their EOBTs
 - Uncertain Group, Planning Group and Ready Group
 - Ready group flights have higher certainty due to pilot call in
 - Planning group ensures flights that are dutifully on time have slot
- Display to ramp controller
 - For the Uncertain Group, a hashtag will be displayed in place of the advisory
 - The controller can click on the hashtag to get an advisory B or C.
 - When pilot calls for pushback, advisory (in cyan) will recommend: A, B or C

![Ramp display](image-url)
Outline

- Background/ top-level design
- Surface modeling
- Capacity estimation
- Surface scheduling
- Surface metering
- Summary
Advantages of the ATD-2 Metering Approach

• Strong focus on optimal use of airport resources

• Flexibility enables stakeholders to vary the amount of delay they would like transferred to gate

• Addresses practical aspects of executing surface metering in a turbulent real world environment

• Algorithms designed for both short term demand/capacity imbalances (banks) or sustained metering situations

• Leverage automation to enable surface metering capability without requiring additional positions

• Represents first step in Tactical/Strategic fusion

• Provides longer look-ahead calculations to enable analysis of strategic surface metering potential usage
For more information

ATD-2 Concept Animation:
https://www.aviationsystemsdivision.arc.nasa.gov/research/tactical/atd2.shtml

ATD-2 Phase 1 Materials:
https://aviationsystems.arc.nasa.gov/publications/atd2/frz1/
Contributing Technologies: FAA Decision Support Systems

DSS components: 3Ts are the engines of DSS

- **Traffic Flow Management System (TFMS)**
 Decision support system for planning and mitigating demand-capacity imbalances in the NAS.

- **Time-Based Flow Management (TBFM)**
 Decision support system for metering based on time to optimize the flow of aircraft.

- **Terminal Flight Data Management (TFDM)**
 A new decision support system for airport surface management and ATC tower functions.
ATD-2 combines existing and emerging FAA technologies with technologies developed through NASA research to create an Integrated Arrival/Departure/Surface (IADS) traffic management system for the metroplex.

ATD-2 IADS System

- **TFDM Terminal Flight Data Manager**
 - Emerging tower tool with electronic flight data and Surface CDM capabilities

- **TBFM Time Based Flow Management**
 - Existing en route tool for time based scheduling of arrivals and departure into constrained flows

- **SARDA Spot and Runway Departure Advisor**
 - Tactical surface modeling and scheduling plus user interfaces for ramp area traffic management

- **PDRC Precision Departure Release Capability**
 - Uses trajectory-based surface information to improve en route tactical departure scheduling
Surface Scheduling: Order of Consideration

The surface scheduler has an ‘order of consideration’ for the aircraft groups.
Surface Metering: Delay Propagation

- Prevent too much or too little gate hold from being assigned
- Prevent runway over-saturation or starvation
- Approach:
 - Absorb delay in AMA and Ramp area by adding buffers in computing pushback time (TOBT)

\[
TOBT = \max (EOBT, TTOT - X \times \text{taxi_time} - Y - Z)
\]

X: *Taxi time buffer* (e.g., X = 1.1)
Y: *Delivery buffer* (e.g., Y = 5 min)
Z: *MIT buffer* (A dynamic delay buffer applied to MIT flights to make sure that the flights do not receive any extra delay at gate due to MIT restriction. The Z value shall be the same amount of extra delay accrued for the aircraft in runway schedule due to MIT restriction. Z=0 for non-MIT flights.)

- Implement tunable parameters to maintain pressure on runway queue depending on demand/capacity