X-ray Optics at MSFC

Speaker: Kiranmayee Kilaru
Brian Ramsey & the team of X-ray Astronomy group
NASA Marshall Space Flight Center
• MSFC has been developing integrated full-shell X-ray optics for ~ 20 years

• Funded through the ROSES/APRA program

• Fabrication Approach: Electroformed nickel replication

• Optics have been built for satellite, rocket and balloon-borne missions and for various spin-off applications
X-ray Optics at MSFC

Optical design and analysis → Fabrication → Metrology

Coatings → Figure correction → Mounting and alignment

Assembly → X-ray testing
Electroformed Nickel Replication

Mandrel Preparation

1. CNC machine mandrel from aluminum bar
2. Chemical clean and activation & electroless nickel (EN) plate
3. Diamond-turn to few 10s nm surface, sub-micron figure accuracy
4. Superpolish to 0.3 – 0.4nm rms finish
5. Metrology on mandrel

Shell Fabrication

6. Ultrasonic clean and passivation
7. Electroform NiCo shell onto mandrel
8. Separate optic from mandrel in cold water bath
MSFC Infrastructure

Mandrel Diamond-Turning

Mandrel Polishing

X-Ray Astronomy Group
MSFC Infrastructure - Metrology

• Surface profile measurements – Long Trace Profiler, Form Talysurf surface profiler, Zygo interferometer
• Surface roughness measurements - Zygo NewView
• Circularity measurements -Coordinate Measuring Machine
• Coating characterization - XRR (X-ray reflectometer), Step Profiler

X-Ray Astronomy Group
MSFC Infrastructure - Replication

X-Ray Astronomy Group
MSFC Infrastructure - Coatings

- Custom designed coating chambers for full-shell optics
- RF and DC magnetron sputter deposition
- Underway – Multilayer deposition chamber
- Active research in In-Situ stress measurement and analysis
Mirror shell alignment and installation stations

• Shells are glued from one end – less weight for the support system, less obscuration.

• General approach – convert radial displacement into azimuthal one

• The use of the clips (FOXSI – 2007) minimizes the distortions due to epoxy shrinking

Pre-glued clips minimize the distortions due to epoxy shrinkage

Mikhail Gubarev; Brian Ramsey; William Arnold; Alignment system for full-shell replicated x-ray mirrors. Proc. SPIE 7360, EUV and X-Ray Optics: Synergy between Laboratory and Space, 73600A (April 30, 2009); doi:10.1117/12.823848.
Alignment & Assembly - FEA

- Sensitivity to radial displacements
- Any radial distortion on one edge of the shell leads to distortions on other end of the shell

Deformation maps for the 34 cm diameter, 60 cm length monolithic shell supported with 12 points at the bottom of the mirror. The shell is tilted by 1 microradian. The distortion scale is in microns.
MSFC Infrastructure – X-ray Testing

Straylight test facility (SLTF):

- 100m long vacuum tube
- Clean room facility on either end of the tube
- Can accommodate mirrors upto 1m diameter
- Pumped with cryopumps upto 10^{-7} torr

X-ray and Cryogenic facility (XRCF):

- The XRCF is the world’s largest optically clean cryogenic and X-ray test facility.
- The facility consists of a 1,700-foot-long X-ray guide tube, an instrument chamber, and two clean rooms
- In addition to the large vacuum chamber, the facility has a smaller, more cost-effective cryogenic and cryogenic optical testing chamber for subscale testing of smaller instruments

X-Ray Astronomy Group
X-Ray Optics Development

Full-shell optics

Down to 50 µm thick

Shells nested into a module

Up to 0.5 m diameter

Down to 0.025 m diameter

X-Ray Astronomy Group
Replicated X-ray optic projects at MSFC

Astronomical applications

Past
- HERO/Super HERO/HEROES

Current
- IXPE
- MIXO

Non-astronomical applications

Medical imaging

Neutron imaging

Previous Projects
- HERO/Super HERO/HEROES
- FOXSI/FOXSI-2/FOXSI SMEX
- ART-XC
- MicroX

Current Projects
- IXPE
- MIXO

Future Projects
- Art-X

Past Programs
- HERO/Super HERO/HEROES
- FOXSI/FOXSI-2/FOXSI SMEX
- ART-XC

Current Programs
- IXPE
- MIXO

Future Programs
- Art-X
Replicated X-ray optic projects at MSFC

<table>
<thead>
<tr>
<th></th>
<th>IXPE</th>
<th>ART-XC</th>
<th>FOXSI</th>
<th>HERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range (keV)</td>
<td>2 - 10</td>
<td>5 - 30</td>
<td>5 - 15</td>
<td>20 - 70</td>
</tr>
<tr>
<td>Optics Effective area</td>
<td>1000 cm² at 3 keV</td>
<td>≥ 455 cm² at 8 keV</td>
<td>100 cm² at 10 keV 10 cm² at 15 keV</td>
<td>200 cm² at 40 keV, 100 cm² at 50 keV</td>
</tr>
<tr>
<td>Number of Modules</td>
<td>3</td>
<td>7 (plus 1 spare)</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Focal length (m)</td>
<td>4.0</td>
<td>2.7</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Number of shells per module</td>
<td>24</td>
<td>28</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Shell diameter range (mm)</td>
<td>162 - 272</td>
<td>50 - 150</td>
<td>76 - 103</td>
<td>50 - 94</td>
</tr>
<tr>
<td>Coating</td>
<td>-</td>
<td>Ir</td>
<td>Ir</td>
<td>Ir</td>
</tr>
</tbody>
</table>

X-Ray Astronomy Group
Spinoff Application: Neutron Microscopy

Collaboration: NASA MSFC, NIST, MIT

- Project aims to build the world’s first neutron microscope
- Re-envisioning and shaping the future of neutron imaging

The microscope will enable:
- Understand targeted drug delivery
- Advance oil and gas recovery
- Perform time resolved SANS measurements during phase transitions (rheology, glass temp., …)
- Enable lithium-air batteries
- Develop additive manufacturing of metal alloys
- Optimize durable, cost effective hydrogen fuel cells
- Reveal solar cell morphologies to reduce the cost of large area solar arrays
- Enhance efficiency of room temp. magnetic refrigeration by imaging 3D magnetic structures
- Improve nutritional value of processed milk by measuring Casein morphology under pressure
- Distinguish internal structure and morphology of graded nanoparticles
- Understand magnetic nanoparticles for hyperthermic cancer treatment, MRI contrast agents

Requirements

- 10 shell pairs. Parabola-parabola
- 1 arc sec FWHM resolution

Neutron microscope prototype (2013) (shells are made from the parabolic segments of existing FOXSI mandrels)

Mikhail V. Gubarev ; Boris Khaykovich ; Brian Ramsey ; David Moncton ; Vyacheslav E. Zavlin ; Kiranmayee Kilaru ; Suzanne Romaine ; Richard E. Rosati ; Ricardo Bruni ; Lee Robertson ; Lowell Crow ; Haile Ambaye ; Valeria Lauter; From x-ray telescopes to neutron focusing. Proc. SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 81470B (September 30, 2011); doi:10.1117/12.897325.
MEDICAL IMAGING
• Animal imaging technology important for biomedical science
 E.g., therapeutic development, disease study

• Non-invasive imaging plays a crucial role in anatomical studies

 Ultrasound: ~200 μm resolution
 CT & MRI: 25–50 μm resolution

 Functional & Metabolic studies

 SPECT & PET: ~1 mm resolution
Ongoing Improvements

• Typical resolutions are ~ 25 arcsec HPD and ~4-10 arcsec FWHM for our production optics.

• Efforts underway to improve the resolution include:

 • Better quality mandrels - Lower-stress electroforming
 • Direct fabrication (& polishing)
 • Post fabrication figure correction
 • More precise alignment and assembly

• The near-term goal of this work is a few arcsec HEW and arcsec-level FWHM.
Improved Mandrels: Zeeko Polishing Machine

- The machine utilizes a “bonnet” technique in which an inflated rubber hemispherical diaphragm supports the polishing medium.

- There are different “bonnet” sizes (20 mm, 40 mm and 80 mm radii of curvature)

- This computer-controlled deterministic polishing processes leads to a high convergence rate.

- Tool path generation (TPG) software had to be developed.

- Direct-fabrication of X-ray mirror

X-Ray Astronomy Group
Improved Mandrels: Zeeko Polishing Machine

Parametric wear pattern simulation enables a more efficient method of exploring the polishing parameter space.
Wear rate is proportional to:
- Velocity of bonnet depends on
 - Spindle rotation
 - Head attack angles
- Bonnet pressure depends on
 - Internal pressure of bonnet
 - Bonnet structural and mechanical properties

Parameter optimization
- Bonnet pressure
- Spindle speed
- Tool Offset

Wear function characterization
- Richardson-Lucy deconvolution algorithm + small nonlinear correction (Tends to generate smoother edge transitions)

Initial error map derived from metrology data. RMS slope errors along x-axis are 8 arcsec.

Derived feed rate map.
Feed rates range from 1.35-20 mm/min.

Predicted result of polishing iteration.
Predicted RMS slope errors are 0.6 arcsec.

X-Ray Astronomy Group
Mandrel Demonstration

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure error (St. Dev.)</td>
<td>500 nm</td>
<td>10.7 nm</td>
</tr>
<tr>
<td>Slope error (> 2 cm) (RMS)</td>
<td>6.32 arcsec</td>
<td>0.30 arcsec</td>
</tr>
<tr>
<td>Low frequency (> 7 cm) slope error (RMS)</td>
<td>2.66 arcsec</td>
<td>0.09 arcsec</td>
</tr>
<tr>
<td>Mid frequency (2-7 cm) slope error (RMS)</td>
<td>5.73 arcsec</td>
<td>0.29 arcsec</td>
</tr>
</tbody>
</table>

Mandrel > 5x better than any made with conventional polishing
Lower electroforming stresses: Pulsed Plating

- Reduce stress variations in electroforming through pulsed plating.
 - Periodic reversal of polarity during electroforming alternates deposition with selective etching, providing a finer grain structure and denser packing.
 - Recent evidence shows that the shells plated this way are very low stress and closer to the mandrel shape than with conventional electroforming.
 - Circularity is key for a good FWHM - Pulsed plating of pure nickel recently demonstrated the micron-level circularity necessary for arc-second-level FWHM resolution.
Full-shell direct fabrication

- Development of the technology to figure and polish thin x-ray metal optics directly

- Finite-Element Analysis shows that full-shell mirrors with thickness ~ 1.5 mm will be stable enough to be polished directly and robust enough to be handled

- Metal substrates - to improve the mechanical stability, and to reduce the manufacturing costs
 - Single-point diamond turning instead of grinding process

- Utilization of computer controlled deterministic polishing, quick convergence to the desired surface figure.

- In situ metrology system - phase-measuring deflectometry (PMD).
 - a perfect fringe pattern displayed by a monitor is observed by a camera after reflection from the surface under the test.
 - Deviations from perfect spacing of the observed fringe pattern measured at multiple phases provides an unambiguous measurement of deviations in the slope of the mirror surface from its ideal shape.

- newly developed fixtures to provide uniform back support to the entire shell during figuring and polishing.
 - stiff outer shell and a thin layer of backing/interface material that goes between the mirror shell and the outer support.
 - high-viscosity liquids
 - Pitch
 - granular materials - spherical glass beads

M. Gubarev; B. Ramsey; J. K. Kolodziejczak; W. S. Smith; J. Roche; W. Jones; C. Griffith; T. Kester; C. Atkins; W. Arnold;
Direct fabrication of full-shell x-ray optics. Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 96030V (September 4, 2015);
doi:10.1117/12.2190020.
Mounting optimization

Performance vs. Axial Mounting Location

- The performance analysis of the cylindrical shell was performed, using both analytical methods and finite element analysis (FEA).
- Analytical methods were applied in Mathematica® and detailed finite element models (FEMs) were made in ANSYS.

![Graphs showing performance vs. axial mounting location]

Analytical models

FEA simulations

Jacqueline M. Roche; Jeffery J. Kolodziejczak; Stephen L. O'Dell; Ronald F. Elsner; Martin C. Weisskopf; Brian Ramsey; Mikhail V. Gubarev;

Opto-mechanical analyses for performance optimization of lightweight grazing-incidence mirrors

X-Ray Astronomy Group
Alignment

- Strings approach – mirror is hung with strings
- Equalizing the strings tension – self leveling and minimum distortions
Figure Correction: Differential Deposition

What Differential deposition is a technique for correcting figure errors in optics.

How Use physical vapor deposition to selectively deposit material on the mirror surface to smooth out figure imperfections.

Why
- Can be used on any type of optic, full-shell or segmented, mounted or unmounted.
- Can be used to correct a wide range of spatial errors. Could be used in conjunction with other techniques… e.g. active optics.

Flowchart

1. Surface profile metrology
2. Develop correction profile “Hitmap”
3. Simulations - translation velocity of shell
4. Differential deposition
5. Surface profile metrology
6. X-ray testing
Simulated correction sequence showing parabolic axial figure profile before (top left) and after 3 stages of correction using a beam of FWHM = 14mm, 5.2 mm and 1.7 mm respectively. The dotted line gives the desired figure and the solid line gives the figure obtained at each stage. Overall, resolution improved from 7.8 arcsec to 0.9 arcsec HEW (2 bounce equivalent).
X-ray testing – pre-and post- differential coating

- Plots show intra-focus X-ray image (-40 mm) of the corrected shell
- Corrected segments are visually obvious compared to the uncorrected in X-ray testing with the CCD
A factor of >2 improvement is achieved with one stage of correction.
Conclusion

- Full-shell optics –
 - Integrated P and H segments
 - Full-circles of revolution
 - Inherently stable
 - Better alignment and assembly
 - Less stress effects due to coatings

- At MSFC
 - Electroform nickel replication has been used for past 20 years and efforts are underway to improve the optics resolution
 - Full-shell direct fabrication using robotic polishing machines are under investigation