LES of a Compressible Mixing Layer and the Significance of Inflow Turbulence

Jan 9, 2017

NASA Glenn Research Center
Drs. Mankbadi, Georgiadis, Debonis

AIAA SciTech 2017

Objectives

- Develop an improved prediction capability for turbulent shear flows
- Analyze the effects of inflow turbulence on the shear layer
- Apply the Synthetic Eddy Method (SEM) to model inflow turbulence
- Compare SEM-LES to a Fixed-LES with no inflow turbulence
- Access sensitivity to spanwise width
- Compare turbulence intensity profiles with experiments
- Apply best practices developed for $M_c = 0.46$ to a high convective Mach number case, $M_c = 0.87$.
Motivation

Pervious Work(s)
LES was used by Georgiadis et al.\(^1\) and Mankbadi et al.\(^2\) that pointed to the need to account for inflow turbulence.

New Work
SEM is utilized as a means to simulate the effects of inflow turbulence on compressible mixing layers.

Introduction

Compressible mixing layers
- Examples: supersonic combustion, exhaust nozzles, and internal flows present in jet engines and scramjets
- Experimental studies investigating compressibility effects: Chinzei et al., Papamoschou & Roshko, Goebel and Dutton, Samimy & Elliot, Hall et al., and Clemens & Mungal.

Turbulent Inflow Conditions
1. full LES of upstream boundary layers
2. Recycling/Rescaling
3. Hybrid RANS/LES
4. synthetic turbulence inflow boundaries
Description of the Flow

Primary Flow:
- $M=1.91$, $U=700\,\text{m/s}$, $P=49\,\text{kPa}$

Secondary Flow:
- $M=1.36$, $U=399\,\text{m/s}$, $P=49\,\text{kPa}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case 2 $M_{c}=0.46$</th>
<th>Case 4 $M_{c}=0.87$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1.91</td>
<td>2.35</td>
</tr>
<tr>
<td>U (m/s)</td>
<td>700</td>
<td>616</td>
</tr>
<tr>
<td>T_r (K)</td>
<td>578</td>
<td>360</td>
</tr>
<tr>
<td>P (kPa)</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>$\delta^+ (\text{mm})$</td>
<td>0.90</td>
<td>0.70</td>
</tr>
</tbody>
</table>

The Synthetic Eddy Method

Jarrin et al. is applied to the mixing layer under consideration to simulate the effects of inflow turbulence.

Inputs:
1. A Reynolds stress tensor and mean flow
2. A length scale
3. A convective velocity

SEM succeeded in replicating the Reynolds stress tensor when the length scale was approximately 1/10 of the boundary layer thickness.

Digital Filtering requires three input length scales.
Computational Approach

- Tenth-Order NASA GRC Wave-Resolving LES (WRLES) code solves the discretized Favre-Filtered Navier-Stokes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Grid</th>
<th>Axially Refined Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Length of domain (mm)</td>
<td>500</td>
<td>48</td>
</tr>
<tr>
<td>Minimum spacing (mm)</td>
<td>0.0125</td>
<td>0.0125</td>
</tr>
<tr>
<td>Maximum spacing (mm)</td>
<td>5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Results

SEM delivers turbulent boundary layer to splitter-tip which enhances downstream mixing.

Primary Flow →

SEM of Primary/Secondary Flow

Secondary Flow →

Structures are Turbulent not Laminar
A wake-like region

Compare these two cases to prove span independence at 24mm.

A wake-like region

Spanwise Independent at 24mm
Fixed-LES: Spanwise width Grid Study

- EXP – Case2
- Fixed – LES – 48mm
- Fixed – LES – 24mm
- Fixed – LES – 12mm
- Fixed – LES – 6mm

Spanwise Independent thickness at 24mm.

SEM-LES: Grid Study

- wake-like region is significantly reduced

SEM-LES is in better agreement with exp.
SEM-LES: Grid Study

Suppression of w_{rms} for a span of 6mm is eliminated when the span is extended to 24mm. Plots show agreement between the numerical results and experiment.

Effect of Inflow Turbulence

SEM reproduces the EASM input stress. Desired levels are sustained.

1. The Reynolds tensor specified at the inflow satisfies the RANS equations instead of the Favre-filtered Navier Stokes.
2. The inability of the numerical scheme to represent the prescribed flow field on the grid.
3. The synthetic eddies are not real turbulence and therefore undergo a process whereby they adjust to the Navier-Stokes equations.
Effect of Inflow Turbulence

Peak Reynolds stresses are unchanged.

No noticeable difference.
Effect of Inflow Turbulence

Key Finding: Variations in Reynolds tensor supplied to SEM do not affect the solution.

Transition to Turbulent Mixing

Clemens and Mungal's schlieren concurs with the quick transition to turbulent mixing of SEM-LES.
• SEM-LES’s inclusion of inflow turbulence makes a dramatic difference in the transition process.
• The specified turbulence quickly destroys the organized structures and transition occurs immediately downstream of the splitter tip.
• The entire shear layer exhibits a broader range of structures which closely resemble the schlieren images of the experiment.

• Fixed-LES transitions to turbulent mixing at $\sim x = 50 \text{mm}$ upward change in slope.
• SEM-LES transitions earlier than Fixed-LES.
• Both SEM-LES and Fixed-LES eventually have the same slope downstream, after the Fixed-LES fully transitions to turbulent mixing.
Leveraging the practices developed for the low convective Mach number, we subsequently investigated the high convective Mach number case.

Grid Size and Width

<table>
<thead>
<tr>
<th>Case</th>
<th>Methodology</th>
<th>Grid Size</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>SEM-LES</td>
<td>2049 x 425 x 42</td>
<td>6mm</td>
</tr>
<tr>
<td>K</td>
<td>SEM-LES</td>
<td>2049 x 425 x 74</td>
<td>12mm</td>
</tr>
<tr>
<td>L</td>
<td>SEM-LES</td>
<td>2049 x 425 x 138</td>
<td>24mm</td>
</tr>
</tbody>
</table>

Parameter Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case 2 (M_c=0.46)</th>
<th>Case 4 (M_c=0.87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>1.91</td>
<td>1.36</td>
</tr>
<tr>
<td>(U) (m/s)</td>
<td>700</td>
<td>399</td>
</tr>
<tr>
<td>(T_a) (K)</td>
<td>578</td>
<td>295</td>
</tr>
<tr>
<td>(P) (kPa)</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>(\delta^+) (mm)</td>
<td>0.50</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Observations

- Increase in spanwise width has no effect on the flow.
- RMS amplitudes are converging with increasing spanwise width.
Compressibility Effects at High Convective Mach Number

rms amplitudes are converging with increasing spanwise width

trend is consistent with previous findings

Linear growth means self-similar very early on

It was hoped that the higher accuracy methods offered by LES would outperform RANS.

SEM-LES assuming (1) periodic flow in z-direction; (2) neglected upper and lower viscous walls; (3) inexact approximation of the inflows and outflow (due to limited experimental measurements).
Conclusions

- LES of a compressible shear layer for: $M_c = 0.46$ (case 2), and $M_c = 0.87$ (case 4).
- Spanwise turbulent stresses and mixing layer thickness were suppressed if the domain is too narrow (6mm).
 1. Fixed inflow neglects inflow turbulence
 2. SEM inflow accounts for inflow turbulence.
- For $M_c = 0.46$, Fixed-LES showed large laminar structures in the initial portion of the shear layer and a delayed transition to turbulent mixing.
- SEM-LES eliminated the organized vortical structures and transition to turbulent mixing occurred immediately following the splitter tip.
- SEM-LES better replicated the experimental trends in turbulent stresses.
- For $M_c = 0.87$, similar trends were found when investigating spanwise width.
- The experimentally observed mixing rate was overpredicted by LES which agreed with RANS-EASM. Neither RANS nor LES have yet to capture the reduced growth rate trend with increasing convective Mach number.
- The key finding was that accounting for inflow turbulence through SEM-LES is a viable option alongside recycling/rescaling LES.

Future Work: Flow Separation

WR-LES and WM-LES

<table>
<thead>
<tr>
<th>Backstep $Re_H=36,000$</th>
<th>$M=0.128$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuser $Re_H=20,000$</td>
<td>$M=0.06$</td>
</tr>
</tbody>
</table>

Wall Resolved LES

$Y^+ = 1$