Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

Korea Visit

May 22-23, 2017
UAS-NAS Project Lifecycle

Timeframe for impact: 2025

<table>
<thead>
<tr>
<th>Prior</th>
<th>Phase 1 [FY11 - FY13]</th>
<th>Phase 2 [FY17 - FY20]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation Review</td>
<td>▲ KDP</td>
<td>△ KDP-C</td>
</tr>
<tr>
<td>Project Start May 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early investment Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Analysis: Concept of Operations (ConOps), Community Progress, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Development to Address Technical Challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Decision Points</td>
<td>SC-228 Deliverables, i.e. Minimum Operational Performance Standards (MOPS) Complete</td>
<td></td>
</tr>
</tbody>
</table>

Phase 1 [FY14 - FY16]

- Flight Validated Research Findings to Inform Federal Aviation Administration (FAA) Decision Making
- **P1 MOPS**

Phase 2 [FY17 - FY20]

- **P2 MOPS**
- **Close-out**

Technical input from Project technical elements, NASA Research Announcements, Industry, Academia, Other Government Agencies, Project Annual Reviews, ARMD UAS Cohesive Strategy

- ▲ Key Decision Points
- △ SC-228 Deliverables, i.e. Minimum Operational Performance Standards (MOPS) Complete
UAS-NAS Project Overview

Project Goal

Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System

Technical Challenge-DAA: Detect and Avoid (DAA)

Technical Challenge-C2: Command and Control (C2)

Technical Challenge-SIO: System Integration and Operationalization (SIO)
FAA Organizational Relationships

- The FAA is using several domestic forums, in conjunction with several international forums to lay out the pathway for their priorities and investments.

FAA UAS Center of Excellence
- performs strategic research to guide the FAA, while the test sites contribute essential inputs through UAS testing

World Radio Conference (WRC) and International Civil Aviation Organization (ICAO) UAS Study Groups
- are addressing UAS access from an international perspective

Industry developed technologies and vehicles
- brought directly to the FAA for risk based certification processes, inclusion special projects such as Pathfinders

Standards Organizations chartered to develop Technology Standards, such as RTCA SC-228 Detect and Avoid (DAA) and Command and Control (C2) MOPS

Inter-government groups such as the UAS Executive Committee (ExCom), Senior Steering groups, OSD Sense and Avoid (SAA) Science and Research Panel (SARP), and Research Transition Teams (RTTs)

UAS Aviation Rulemaking Committee (ARC) groups
- implemented to solve specific problems as directed by the FAA

NASA has a leadership role within many domestic forums and participates in the international forums
RTCA SC-228 Phase 1 MOPS Terms of Reference

- RTCA SC-228 Terms of Reference (ToR) defined a path forward to develop Minimum Operational Performance Standards (MOPS)
- Phase 1 MOPS are addressed by UAS-NAS Current (FY14 – FY16) Portfolio
 - Command and Control (C2) Data Link MOPS – Performance Standards for the C2 Data Link using L-Band Terrestrial and C-Band Terrestrial data links
 - Detect and Avoid (DAA) MOPS – Performance standards for transitioning of a UAS to and from Class A or special use airspace, traversing Class D and E, and perhaps Class G airspace
- SC-228 Deliverables to RTCA PMC
 - C2 and DAA White Papers (Dec 2013) - Assumptions, approach, and core requirements for UAS DAA and C2 Equipment
 - C2, DAA, and Radar MOPS for Verification and Validation (Jul 2015) – Preliminary MOPS Including recommendations for a Verification and Validation test program
 - C2 Final MOPS (Jul 2016)
 - DAA and Radar Final MOPS (Nov 2016)
RTCA SC-228 P2 MOPS Terms of Reference

• RTCA SC-228 Terms of Reference (ToR) defined a path forward to develop Minimum Operational Performance Standards (MOPS)
 – Phase 1 MOPS were addressed by UAS-NAS (FY14 – FY16) Portfolio
 – Phase 2 MOPS included in the original ToR, but had several TBDs
 • ToR development team established to ensure DAA & C2 scope broad enough to fully enable the operating environments relevant UAS were expected to leverage (e.g. Manned Like IFR and Tweeners)

• Phase 2 MOPS ToR Scope
 – C2: Use of SATCOM in multiple bands and terrestrial extensions as a C2 Data Link to support UAS and address networking interoperability standards for both terrestrial and satellite systems
 – DAA: Extended UAS operations in Class D, E, and G, airspace, and applicability to a broad range of civil UAS capable of operations Beyond Visual Line of Sight (BVLOS)

• SC-228 Final Documents

<table>
<thead>
<tr>
<th>Phase 1 (To Be Published 2016)</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAA MOPS</td>
<td>C2 SATCOM Data Link MOPS (Jul 2019*)</td>
</tr>
<tr>
<td>DAA Air to Air Radar MOPS</td>
<td>C2 Terrestrial Data Link MOPS Rev A (Jul 2020)</td>
</tr>
</tbody>
</table>

* Date under discussion within RTCA SC-228
UAS-NAS Project Value Proposition

NASA UAS-NAS Project Activities

C2 Performance Standards
- Develop C2 Prototype SATCOM Systems
- Develop C2 Prototype Terrestrial System
- Conduct C2 Flight Test and MS&A (Data Link, CNPC Spectrum, CNPC Security, BVLOS/BRLOS, ATC Interoperability)
- Develop C2 Requirements

DAA Performance Standards
- Develop DAA Test beds
- Conduct DAA Flight Test and MS&A (Human Factors, Performance Trade-offs, Interoperability, CONOPS, Well Clear, Collision Avoidance, Self Separation)
- Develop DAA Performance & Interoperability Requirements

Integrated Test & Evaluation
- Develop DAA Prototype System
- Develop Live Virtual Constructive (LVC) Test Infrastructure
- Conduct Technology and CONOPS testing
- Conduct FT5 Test Scenarios
- Conduct FT6 Test Scenarios

Key Products
- SATCOM MOPS
- Terrestrial MOPS
- SATCOM MOPS
- DAA MOPS

Resultant Outcomes
- C2 Performance Requirements to inform C2 MOPS
- DAA Performance Requirements to inform DAA MOPS
- Re-usable Test Infrastructure
- Non-Coop Sensor MOPS
- GBDAA MOPS
- DAA MOPS Rev A/B
TC-C2: UAS Satcom and Terrestrial Command and Control

Project Goal

Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

Technical Challenge-DAA: Detect and Avoid (DAA)

Technical Challenge-C2: Command and Control (C2)

Technical Challenge-SIO: System Integration and Operationalization (SIO)
C2 Subproject Structure for Project Phase 2

Command and Control
<TC-C2>
Subproject Manager (SPM)
Mike Jarrell, GRC
Subproject Technical Leads
Jim Griner, GRC

Ku/Ka-Band SATCOM
Terrestrial Extension
C-Band SATCOM
Integrated Flight Test Support (IT&E TWP)

C2 Performance Standards

Develop C2 Prototype System

Conduct C2 Flight Test and MS&A
Data Link
CNPC Spectrum
CNPC Security
BVLOS/BRLOS
ATC Interoperability

Develop C2 Requirements

C2 Performance Requirements to inform C2 MOPS

RTCA
C2 MOPS
C2 Technical Standard Order (TSO)
Recent Accomplishments: C2 Phase 1 MOPS

Spectrum Compatibility Analysis
Objective: Develop data and rationale to obtain appropriate frequency spectrum allocations to enable the safe and efficient operation of UAS in the NAS

Accomplishment: NASA conducted sharing study results delivered at the 2015 World Radiocommunication Conference (WRC-15) to support Ku & Ka Band frequency Allocations

Verify and Validate C2 MOPS Requirements
Objective: Analyze the performance of fifth generation Control and Non-Payload Communication System (CNPC) prototypes

Accomplishment: Utilized Gen-5 radios at three CNPC ground stations and onboard GRC S-3B aircraft in order to collect data for performance in two relevant environments

Final C2 MOPS released through RTCA in July 2016
Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.
Detect and Avoid (DAA) Performance Standard Operating Environments (OE)

DAA System for Operational Altitudes (> 500ft AGL)

Legend
Phase 1 Research Areas (FY14 – FY16)
Phase 2 Research Areas (FY17 – FY20)
DAA Subproject Structure for Project Phase 2

Detect and Avoid
<TC-DAA>

Subproject Manager (SPM)
Jay Shively, ARC

Subproject Technical Leads
Confesor Santiago, ARC, Tod Lewis, LaRC, TBD, ARC

Alternate Surveillance Requirements
Well Clear Alerting Requirements
ACAS Xu
External Collaborations
Integrated Events

SAA Performance Standards

Develop DAA Test beds

Conduct SAA Flight Test and MS&A
Human Factors
Performance Trade-offs
Interoperability
Self Separation

Develop SAA Performance & Interoperability Requirements
CONOPS
Well Clear Collision Avoidance

SAA Performance Requirements to inform DAA MOPS

RTCA DAA MOPS
SAA Technical Standard Order (TSO)
CFR 91.113: “...each person operating an aircraft [shall] see and avoid other aircraft ... the pilot shall give way to that aircraft and may not pass over, under or ahead of it unless well clear.”

Time horizons of applicability are not to scale
Recent Accomplishments: DAA Phase 1 MOPS

Human Systems Integration “Part Task 6”
Objective: Conduct final V&V activity in support of the SC-228 DAA human machine interface requirements for displays, alerting, and guidance.

Accomplishment: Verified pilot performance against minimum requirements, re-evaluated performance differences between a standalone and integrated DAA displays.

DAA End to End V&V
Objective: Verify and Validate (V&V) a MOPS-representative Detect and Avoid (DAA) system in an End-to-End simulation environment representative of the MOPS.

Accomplishment: Final closed-loop, pilot (model)-in-the-loop, end-to-end simulation evaluation of MOPS leveraging encounter sets from MOPS test cases & MIT/LL NAS encounter model.

Final DAA MOPS scheduled to be released through RTCA in December 2016.
Integrated Test & Evaluation

<TC-ITE>

Subproject Manager (SPM)
Heather Maliska, AFRC

Subproject Technical Leads
Sam Kim, AFRC, Jim Murphy, ARC

Integration of Technologies into LVC-DE
Simulation Planning & Integration
LVC-DE Infrastructure Sustainment
Integrated Flight Test

Integrated Test & Evaluation

Develop DAA Prototype System
Develop Live Virtual Constructive (LVC) Test Infrastructure
Conduct Technology and CONOPS testing
Re-usable Test Infrastructure

ACAS Xu FT2
Conduct FT5 Test Scenarios
Conduct FT6 Test Scenarios
Risk Reduction Approach To Integrated Test Flow

- Each test built upon the previous and reduced future risk.
- Lessons learned applied from one test to the next.
Recent Accomplishments: DAA Phase 1 MOPS

Integrated Test and Evaluation FT4

Objective:

• Conduct Flight Test Series 4 integrating the latest SSI algorithms, HSI displays, and active test aircraft sensors using the Live, Virtual, Constructive test environment
• Document the performance of the test infrastructure in meeting the flight test requirements

Accomplishment: FT4 successfully completed on 6/30/2016

• 2 system checkout and 19 data collection flight tests
• 11 weeks (April 12 - June 30)
• 321 air-to-air encounters

Final DAA MOPS scheduled to be released through RTCA in December 2016
IT&E Capabilities: Providing the Infrastructure for Flight Testing

• **Ownship – Ikhana**
 – Build-up of DAA system (radar/ADS-B/TCAS) to meet researcher requirements
 – Logged over 190 hours of flight time with Ikhana for ACAS Xu, FT3 and FT4 data collection flights

• **Intruder aircraft – 6 total aircraft**
 – Met researcher objectives to represent many classes of aircraft
 • Slow-Speed, Mid-Speed, High-Speed
 • Cooperative vs. Non-Cooperative
 • Small, medium, large radar cross section
 – Equipped 4 aircraft with required sensors
 – Coordinated 25 crew members from 3 organizations
 • NASA, Air Force, Honeywell

• **Flight Test Stats**
 – ACAS Xu: 9 flights, 170 encounters flown (1 intruder)
 – FT3: 11 flights, 212 encounters flown (multiple intruders)
 – FT4: 19 flights, 321 encounters flown (up to 4 intruders/enc.)
IT&E Capabilities:
Encounter Design and Range Coordination

Airspace Planning

- Primarily Mercury Spin, 4 Corners & Buckhorn MOA (red outline)
- 1,000 ft AGL (4.2K ft) to 20K ft MSL
- Extensions (west / north) may be requested real time for encounters that need the additional airspace
- Ops outside of test area (blue shaded areas) are planned to be performed early (before 0800) when airspace is relatively empty
- Operations between 0600 and 0700 are under Joshua control and have less geographical constraints

Coordination with Edwards Range

- Coordination of range/operating area borders and UAS keep out zones.
- Ikhana must remain within R-2515 at all times.
- Intruder aircraft can use Buckhorn MOA, plus areas shaded in blue

Encounter design accomplished by operations working group with researchers and partners.

- Encounter requirements coordinated with System Safety Working Group to ensure flight safety.
- Mitigations designed into flight test planning (safe separation, training, testing, offsets, procedures, etc.)
Flight Test Card #1

CARD#

171-Gc-M3M
OWNSHIP

Lost Link Mission:

1. TC announces COMEX time.
2. Announce “Callsign,” IP Inbound, altitude & special procedure review/crossing IP.
3. On condition at IP.
4. TC calls “terminate” when run complete.
5. TC announces next Card Number.

Deconfliction Alt:

10000

Adopt Procedure:

10000 MAINTAIN HEADING

Adopt Procedure:

11000 RIGHT 123

Comex Time:

WPT	**Latitude**	**Longitude**	**Alt**	**Dist**	**KGS**	**Leg Time**
IP27 | N34° 54.14’ | W117° 24.19’ | 10000 | 5.0 | 150 | 3+00
IP21 | N34° 54.08’ | W117° 23.11’ | 0 | 258 | | |
CPA1 | N34° 54.14’ | W117° 30.29’ | 10000 | 2.5 | 150 | |
CPAS2 | N34° 54.08’ | W117° 30.23’ | 0 | 258.0 | | |

Notes:

- Ownship Maneuver. Intruder 1 – CPAS Guidance. Intruder 2 TCAS
- Guidances can be to CLIMB or MAINTAIN ALTITUDE.
- Tolerance: ± 8 sec ± 5 kts

Comex Time:

WPT	**Latitude**	**Longitude**	**Alt**	**Dist**	**KGS**	**Leg Time**
IP115 | N34° 51.67’ | W117° 36.71’ | 10000 | 6.0 | 180 | 3+00
MP27 | N34° 54.32’ | W117° 34.46’ | 0 | 033 | | |
CPA32 | N34° 53.32’ | W117° 30.17’ | 10000 | 0.7 | 180 | |

Notes: Do not overshoot planned route. Expect Ownship Maneuver.

Tolerance: ± 8 sec ± 5 kts
Summary

• UAS-NAS Project has developed robust capabilities supporting initial developments of DAA and C2 Technologies

• Significant work is remaining to lead the community towards ensuring DAA and C2 technology are interoperable with the entire National Airspace System.

• The project is dedicated to driving the community towards robust and innovative solutions that apply to DAA, C2, and other necessary vehicle technologies