Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

J. Douglas Kiser and Joseph E. Grady, Ceramic and Polymer Composites Branch
Christopher J. Miller and Lennart S. Hultgren, Acoustics Branch
NASA Glenn Research Center, Cleveland, OH

Michael G. Jones, Structural Acoustics Branch
NASA Langley Research Center, Hampton, VA

Research Supported by the NASA Fundamental Aeronautics Program
Overview

- Reduction of aircraft noise, with emphasis on reducing core noise
- Acoustic liner for reducing core noise—considerations and goals
- Acoustic absorption via Quarter Wavelength Resonators
- CMC acoustic liners that can provide broadband absorption
 - advantages of oxide/oxide CMC liners
 - liner concepts
 - test articles
 - results
- Potential future efforts
Need to Reduce Perceived Community Noise Attributable to Aircraft

Background / Problem
NASA is Working With Other Organizations to Reduce Aircraft Noise, NOx Emissions, and Fuel Burn

NASA Subsonic Transport System Level Measures of Success

<table>
<thead>
<tr>
<th>TECHNOLOGY BENEFITS</th>
<th>TECHNOLOGY GENERATIONS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Near Term 2015-2025</td>
<td>Mid Term 2025-2035</td>
<td>Far Term beyond 2035</td>
</tr>
<tr>
<td>Noise (cum below Stage 4)</td>
<td>22 - 32 dB</td>
<td>32 - 42 dB</td>
<td>42 - 52 dB</td>
</tr>
<tr>
<td>LTO NOx Emissions (below CAEP 6)</td>
<td>70 - 75%</td>
<td>80%</td>
<td>> 80%</td>
</tr>
<tr>
<td>Cruise NOx Emissions (rel. to 2005 best in class)</td>
<td>65 - 70%</td>
<td>80%</td>
<td>> 80%</td>
</tr>
<tr>
<td>Aircraft Fuel/Energy Consumption (rel. to 2005 best in class)</td>
<td>40 - 50%</td>
<td>50 - 60%</td>
<td>60 - 80%</td>
</tr>
</tbody>
</table>

It will take a combination of noise reduction approaches to achieve these goals.

Evolutionary Revolutionary Transformational
Contributions to Engine Noise: Fan, Jet, Core
Need for Reducing Jet Engine Core Noise

Background / Problem

- As fan and jet noise components are reduced, the importance of core (combustor, turbine) noise increases.

- Expecting increased core noise levels as aircraft engines evolve over the next decade.

- Core noise could limit the total noise reduction potential of new ultra-high bypass systems.
Addressing the Issue of Core Noise

- NASA has investigated core noise in a task *(Ref. 1-5)* focused on:
 - understanding the nature of core noise and its level of importance (contribution to overall engine noise), and
 - means of reducing core noise.

- This CMC acoustic liner development effort *(Ref. 6)* was performed to support that task.

note that there is less room for core noise liners
Primary Goal: develop an acoustic liner capable of reducing broadband core noise in a hostile internal engine environment.
Goals

• A lightweight, durable liner capable of reducing core noise over the frequency range of 400-3000 Hz, toward achieving NASA’s noise reduction goals.

• Minimize the size of the liner. This is a significant concern in the core region of the engine, where the volume available for an acoustic liner is limited.
Conventional, passive liners:

- Hexagonal or honeycomb geometry is of strong interest due to the improved strength that it provides.
- The cell cavity height and width control the frequency at which maximum absorption occurs.
Quarter-Wavelength Resonator

The frequency that is absorbed by a quarter-wavelength resonator (e.g., a liner cell) is defined by:

\[f = \frac{c}{4L} \]

- \(f \): frequency in Hertz (Hz) where maximum absorption occurs
- \(c \): speed of sound in meters per second (m/s)
- \(L \): length of the cell in meters (m)

Example: At 1112°F (600°C)—and \(c = 592 \text{ m/s}^* \):

- for \(L = 5 \text{ cm} \), \(f = 2962 \text{ Hz} \)
- for \(L = 30 \text{ cm} \), \(f = 494 \text{ Hz} \)

* http://www.sengpielaudio.com/calculator-speedsound.htm
Conventional, passive liners:

- **Limitation**: Acoustic absorption spectra: characterized by a single peak at the system resonance frequency and its odd harmonics with significantly reduced absorption at other frequencies.
Approach

• Pursue alternate CMC acoustic liner geometries that avoid the problems associated with conventional liners (that are based on honeycomb sandwich structures where all of the cells have a similar length).

• Initial approach that was investigated built upon an existing oxide/oxide CMC conventional liner manufactured by ATK COI Ceramics, Inc.
Potential Advantages to Using Ox/Ox CMC Liner(s)

- In comparison w/uncoated SiC/SiC or SiC/SiNC CMCs, Ox/Ox CMC materials should:
 - provide better environmental stability from 482 - 982°C (900 - 1800°F), and
 - lower thermal conductivity (which could minimize heat flow to surrounding structures).

- Oxide fibers are relatively inexpensive (compared to SiC fibers).

- The density of a candidate Ox/Ox composite is ≈ 2.8 g/cc (AS-N610) vs. 8.4 g/cc for IN625, potentially offering component weight reduction and reduced fuel consumption.
Oxide Fiber/Oxide Matrix CMCs: Properties/Max. Use Temperature

Candidate CMCs— for fabrication of acoustic liners

<table>
<thead>
<tr>
<th>Property</th>
<th>AS-N312</th>
<th>AS-N720</th>
<th>A-N720</th>
<th>AS-N650</th>
<th>AS-N610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Density (gm/cc)</td>
<td>2.30</td>
<td>2.60</td>
<td>2.73</td>
<td>2.80</td>
<td>2.83</td>
</tr>
<tr>
<td>Nominal Fiber Volume (%)</td>
<td>48</td>
<td>45</td>
<td>45</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>Open Porosity (%)</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>RT Tensile Modulus (GPa)</td>
<td>31</td>
<td>76</td>
<td>70</td>
<td>96</td>
<td>124</td>
</tr>
<tr>
<td>RT Tensile Strength (MPa)</td>
<td>124</td>
<td>220</td>
<td>169</td>
<td>261</td>
<td>365</td>
</tr>
<tr>
<td>Short Beam Shear (MPa)</td>
<td>9.0</td>
<td>14.3</td>
<td>12.5</td>
<td>-</td>
<td>15.0</td>
</tr>
<tr>
<td>Thermal Expansion (10⁻⁶/°C)</td>
<td>4.8</td>
<td>6.3</td>
<td>6.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Maximum Temperature (°C)</td>
<td>650</td>
<td>1100</td>
<td>1200</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Key: AS – Aluminosilicate matrix: A – Alumina matrix

Various candidate oxide/oxide CMC materials available for use from 600 - 1200°C

Source: ATK COI Ceramics, Inc. website

http://www.coiceramics.com/pdfs/3%20oxide%20properties.pdf
Approach

• **Concept:**
 - Modify existing CMC honeycomb basic structure to create a range of effective cell lengths that can reduce noise over a range of frequencies
 - Various approaches previously demonstrated using other materials, Refs. 7, 8.

• Modeling will help guide the liner design. Ref. 9

• Demonstrate increased Technology Readiness Level (TRL) through development and testing of appropriate subelements / test articles.
• **Variable channel lengths** can provide noise reduction over a range of frequencies, because the cavity height controls the frequency at which maximum absorption will occur.

(600°C) $f = 2962$ Hz

5 cm

(600°C) $f = 494$ Hz

30 cm

• **Changing the configuration of the channels** by angling the cells or using curved or bent cells with the required effective length can significantly reduce the liner depth, while still providing nearly the same performance.

5 cm

20 cm

Unacceptable / impractical thickness—given concern about volume available for an acoustic liner

Significantly reduced thickness increases the feasibility of utilizing this type of liner
Acoustic Performance Characterization
CMC* Test Articles** for the NASA LaRC Acoustic Liner Test Facilities

Test articles for Normal Incidence Tube (NIT) - 0.5”, 1”, 3”, and 6” depth (2 x 2 “ facesheets)

Test article for Grazing Flow Impedance Tube (GFIT)
- 16” length, 2” wide
- 0.5 to 3” depth
- For demonstration of acoustic absorption over a range of frequencies

* CMC (ceramic matrix composite)
** Fabricated by COI Ceramics, Inc.
Acoustic Performance Characterization

CMC Test Article for the NASA LaRC Normal Incidence Tube (NIT)

3” depth NIT test article**

- plexiglas sample holder
- oxide/oxide CMC backsheet
- 2 x 2” perforated oxide/oxide CMC* facesheet
- oxide/oxide CMC honeycomb core

* CMC (ceramic matrix composite)
** Fabricated by COI Ceramics, Inc.
Acoustic Performance Characterization
*CMC** Test Articles for the NASA LaRC Normal Incidence Tube (NIT)

Top View—Perforated oxide/oxide CMC facesheets
- Holes spaced 0.125” apart
- Full or partial blockage of holes where facesheet bonded to CMC honeycomb core

** Fabricated by COI Ceramics, Inc.
OBJECTIVES
- Characterize basic CMC acoustic liner samples.
- Evaluate the conventional impedance prediction model over a realistic range of frequency and impedance spectra, to assess the effects of CMC porosity on acoustic performance.

RESULTS
- The results were used to evaluate the prediction model over a realistic range of impedance spectra.
- Excellent agreement between the measured and predicted impedance spectra (resistance, θ, and reactance, χ) was observed for this test condition (no flow, 140 dB).

SIGNIFICANCE
- Impedance prediction model used for conventional liners is sufficient for use with the CMC structures and it was used to design a broadband CMC liner for Grazing Flow Impedance Tube evaluation.
Testing

• The 16” long Ox/Ox CMC sandwich structure was tested in the Grazing Flow Impedance Tube (GFIT) in the NASA LaRC Liner Technology Facility (Ref. 10) to assess the effects of mean flow at ambient conditions.

• Comparison with a similar geometry plastic variable-depth liner fabricated via SLA (stereolithography) indicated that the material properties of the CMC liner have no significant effect on the resultant sound absorption.

• The potential for sound absorption with acoustic liners with varying impedance along the length of the liner was demonstrated.
Ox/Ox CMCs seem to be suitable candidate materials for core noise liners, based on initial acoustic testing at room temperature.

Concepts for increasing the effective cell height for lower frequency absorption while minimizing the overall liner height have been identified by NASA (bending the cells, interconnecting the cells, etc.).

The performance of a CMC acoustic core liner can be optimized using improved NASA design tools that will help us reduce noise over a specified frequency range.

In the near term, concepts of interest could initially be investigated by examining test articles made via stereolithography prior to obtaining CMC samples.

Follow-on activities could include characterization of CMC test articles up to 6000 Hz and at higher T to further the development of the technology. **Goal: Testing under increasingly realistic aeroacoustic environments.**
Acknowledgments

• J. Heidmann, NASA GRC (Cleveland, OH)
• J. Riedell, ATK COI Ceramics, Inc. (San Diego, CA)
• NASA LaRC Liner Technology Facility
References

References

The cell cavity height and width control the frequency at which maximum absorption occurs.

Facesheet geometry (i.e., thickness, hole diameter, and porosity) controls the amount of acoustic absorption that will occur.

Increased facesheet thickness can contribute to noise reduction and provide increased strength and impact resistance.

However, increased facesheet thickness also increases the weight of the liner, as does increased liner depth.
ATK COI Ceramics, Inc. fabricated the following CMC (ceramic matrix composite) honeycomb sandwich structures with perforated CMC facesheets for acoustic testing:

- Four oxide/oxide 2 x 2” facesheet samples with different cell lengths for acoustic attenuation characterization at NASA LaRC via Normal Incidence Tube (NIT) testing.

- A 16” long oxide/oxide test article with cells ranging in depth from 0.5 to 3” (1.3 to 7.6 cm) for testing at NASA LaRC via Grazing Flow Impedance Tube (GFIT) testing.
Acoustic Absorption via Helmholtz Resonator

- Used to reduce lower frequency noise.
- Volume of the cell/chamber is sufficiently large to allow absorption of the lower frequencies.
- **Limitation**: Can lead to insufficient volume available for liner components targeting the higher frequencies.

\[f = \frac{c}{2\pi} \sqrt{\frac{S}{VL}} \]

- \(f \): frequency in Hertz (Hz) where maximum absorption occurs
- \(c \): speed of sound in meters per second (m/s)
- \(L \): thickness of the facesheet in m
- \(S \): surface area of the orifice in m\(^2\)
- \(V \): volume of the air within the cell in m\(^3\)