Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path toward 2700°F Temperature Capability and Beyond

Dongming Zhu, Bryan Harder, Janet B. Hurst, Brian Good, Gustavo Costa, Ramakrishna Bhatt and Dennis S. Fox

Materials and Structures Division
NASA Glenn Research Center
Cleveland, Ohio 44135, USA

41st Annual Conference on Composites, Materials, and Structures
Cocoa Beach, Florida
January 23-27, 2017
Durable Environmental Barrier Coating Systems for Ceramic Matrix Composites (CMCs):

— NASA Environmental barrier coatings (EBCs) development objectives
 • Help achieve future engine temperature and performance goals
 • Ensure system durability – towards prime reliant coatings and material systems
 • Establish database, design tools and coating lifing methodologies
 • Improve technology readiness

Fixed Wing Subsonic and Supersonics Aircraft: - Transformational Tools and Technologies Project
Entry, Descending and Landing: Ultra High Ceramics and Coatings (UHTCC) - NASA CIF Project
NASA Environmental Barrier Coating Development Goals

- Emphasize temperature capability, performance and durability
- Develop innovative coating technologies and life prediction approaches
- 2700°F (1482°C) EBC bond coat technology for supporting next generation
- 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
 - Recession: <5 mg/cm² per 1000 h
 - Coating and component strength requirements: 15-30 ksi, or 100-207 MPa
 - Resistance to Calcium Magnesium Alumino-Silicate (CMAS), impact and erosion
 - Demonstrate feasibility towards Ultra High Temperature and Multifunctional Ceramics – Coating Systems: improved environmental stability and mechanical stability

Step increase in the material’s temperature capability

<table>
<thead>
<tr>
<th>Temperature Capability</th>
<th>Increase in ∆T across T/EBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800°F combustor TBC</td>
<td>3000°F+ (1650°C+)</td>
</tr>
<tr>
<td>2500°F Turbine TBC</td>
<td>2700°F (1482°C)</td>
</tr>
<tr>
<td>Ceramic Matrix Composite</td>
<td>2700°F (1482°C) Gen III SiC/SiC CMCs</td>
</tr>
<tr>
<td>Single Crystal Superalloy</td>
<td>2400°F (1316°C) Gen I and Gen II SiC/SiC CMCs</td>
</tr>
<tr>
<td>Gen III – Current commercial</td>
<td>2000°F (1093°C)</td>
</tr>
<tr>
<td>Gen II</td>
<td>Year</td>
</tr>
<tr>
<td>Gen I</td>
<td></td>
</tr>
</tbody>
</table>

* Recession: <5 mg/cm² per 1000 hr (40-50 atm., Mach 1~2)
** Component strength and toughness requirements
Outline

• Advanced EBC and Rare Earth – Silicon based 2700°F+ capable bond coat developments
 - Material systems
 - Oxidation resistance
 - Cyclic and thermomecahnical durability
 - Some bench mark durability tests for 2700°F EBC systems

• Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems
 - HfCN based system with Si and RE dopant concepts
 - Develop HfO$_2$ – Si based coatings for improved oxidation resistance

• Summary and conclusion
Environmental Barrier Coating Development: Challenges and Limitations

- EBCs limited in their temperature capability, water vapor stability and long-term durability

- Advanced EBCs also require higher strength and toughness
 - In particular, resistance to combined high-heat-flux, engine high pressure, combustion environment, creep-fatigue, loading interactions

- EBCs need improved erosion, impact and calcium-magnesium-alumino-silicate (CMAS) resistance

- Also possibly developed to Ultra High Temperature Ceramics applications
Advanced High Temperature and 2700°F+ Bond Coat Development

- NASA advanced EBC Development:
 - Advanced compositions ensuring environmental and mechanical stability
 - Bond coat systems for prime reliant EBCs; capable of self-healing

High strength, high stability reinforced composites: HfO₂-Si and a series of Oxide-Si systems

HfO₂-Si based and minor alloyed systems for improved strength and stability, e.g., rare earth dopants

Advanced 2700°F bond coat systems: RE-Si based systems

Advanced 2700°F bond coat systems: RE-Si based Systems, grain boundary engineering designs and/or composite systems

Temperature capability increase

Rare Earth – Si + Hf coating systems

Hf – Rare Earth – Si coating systems
NASA EBC Bond Coats for Airfoil and Combustor EBCs

- Advanced systems developed and processed to improve Technology Readiness Levels (TRL)
- Composition ranges studied mostly from 50 – 80 atomic% silicon
- Silicon and dopant composition being optimized for 2700°F EBC applications

<table>
<thead>
<tr>
<th>PVD-CVD</th>
<th>EB-PVD</th>
<th>APS*</th>
<th>FurnaceLaser/CVD/PVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSi</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td>HfO2-Si; REHfSi GdYSi GdYbSi GdYb-LuSi NdYbSi</td>
</tr>
<tr>
<td>ZrSi+Y</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td>HfO2-Si YSi+RESilicate YSi+Hf-RESilicate</td>
</tr>
<tr>
<td>ZrSi+Y</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td>YbGdYSi</td>
<td>GdYSi-X</td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td>YbGdSi</td>
<td>GdYSi-X</td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>HfSi + Si</td>
<td>YbGdSi</td>
<td>GdYSi-X</td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>HfSi + YSi</td>
<td>YbGdSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>HfSi+Ysi+Si</td>
<td>YbGdSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>YbSi</td>
<td>YbGdSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>HfSi + YbSi</td>
<td>YbGdSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>GdYbSi(Hf)</td>
<td>YbGdSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>YybGdSi(Hf)</td>
<td>YbYSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
<tr>
<td>YbHfSi</td>
<td>YbHfSi</td>
<td></td>
<td>Hf-RESilicate</td>
</tr>
</tbody>
</table>

Process and composition transitions

APS*: or plasma spray related processing methods

Used in ERA components as part of bond coat system

Hf-RE-Al-Silicate

Used in ERA components as part of bond coat system
Oxidation Kinetics and Furnace Cyclic Durability of RESiEBC Bond Coats for 2700°F SiC/SiC CMC Systems

- 1500°C (2700°F+) capable RESiO+X series EBC bond coat compositions developed for turbine engine coatings
- Oxidation kinetics in flowing O2 showed parabolic or pseudo-parabolic oxidation behavior at high temperatures
- Some early multi-component systems showed significantly improved furnace cyclic durability at 1500°C
Microstructures of the Advanced EBCs after the Oxidation Tests

- RE-Si system: forming RE silicate “scales”, fully compatible with EBCs
- Reaction and oxidation mechanisms are being further studied, particularly RE containing SiO$_2$ – rich phase stability
- Further process improvements can help improve the oxidation resistance and durability

Cross-section micrograph of YbGdSi(O) tested at 1500°C, 500hr
Microstructures of Furnace Cyclic Tested GdYbSi(O) EBC Systems

- Cyclic tested cross-sections of PVD processed YbGdSi(O) bond coat
- Self-grown rare earth silicate EBCs and with some RE-containing SiO$_2$ rich phase separations
- Relatively good coating adhesion and cyclic durability

1500°C, in air, 500, 1 hr cycles

- Complex coating architectures after the testing
- Designed with EBC like compositions – Self-grown EBCs

Composition (mol%) spectrum Area #1
SiO$_2$ 67.98
Gd$_2$O$_3$ 11.95
Yb$_2$O$_3$ 20.07

Composition (mol%) spectrum Area #2
SiO$_2$ 66.03
Gd$_2$O$_3$ 10.07
Yb$_2$O$_3$ 23.9
Microstructures of Cyclic Tested GdYbSi(O) EBC Systems - Continued

- Cyclic tested cross-sections of PVD processed YbGdSi(O) bond coat
- Self-grown rare earth silicate EBCs and with some RE-containing SiO₂ rich phase separations
- Relatively good coating adhesion and cyclic durability

1500°C, in air, 500, 1 hr cycles

Outlined area

<table>
<thead>
<tr>
<th>Composition (mol%)</th>
<th>SiO₂</th>
<th>Gd₂O₃</th>
<th>Yb₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66.72</td>
<td>8.62</td>
<td>24.66</td>
</tr>
</tbody>
</table>

Spot

<table>
<thead>
<tr>
<th>Composition (mol%)</th>
<th>SiO₂</th>
<th>Gd₂O₃</th>
<th>Yb₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96.15</td>
<td>1.2</td>
<td>2.64</td>
</tr>
</tbody>
</table>
HfO$_2$-Si Bond Coats Processing and Composition Optimizations

- EB-PVD HfO$_2$-Si bond coat process and composition extensively studied
- Achieving lower oxygen activity, lower silicon content, with robust processing
- Coating systems demonstrated durability in various lab tests
- Potential systems for using as “scales and coatings” of UHTCC
HfO$_2$-Si EBC Bond Coat Temperature Capability Tested

- HfO$_2$-Si bond coat tested at up to 1560°C +, 50 h
- Higher temperature region had

![HfO$_2$-Si surface](image1)

![HfO$_2$-Si surface](image2)

<table>
<thead>
<tr>
<th>Element</th>
<th>At%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf</td>
<td>24.82</td>
</tr>
<tr>
<td>Si</td>
<td>49.10</td>
</tr>
<tr>
<td>O</td>
<td>26.08</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Low oxygen content
Advanced RE-Si Based EBC Bond Coats: Controlled Oxygen Activities, Dopant Additions

- Advanced compositions improve high temperature stability and environmental resistance
- Refined grain structures observed for hafnium-doped systems after 500 h furnace cyclic tests

YbSi-YbSi(O) EBC bond coat, 1500°C cyclic tested

YbSi-YbSi(O)+Hf EBC bond coat, 1500°C cyclic tested
Advanced RE-Si Based EBC Bond Coats: Controlled Oxygen Activities, Dopant Additions

- Oxidation kinetics comparisons for various 2700°F coating systems
- The PVD processed REHfSi shown to have lower oxidation rates

![Graph showing oxidation kinetics comparisons for various 2700°F coating systems, with REHfSi shown to have lower oxidation rates.](image-url)
Thermal Gradient Tensile Creep Rupture Testing of Advanced Turbine Environmental Barrier Coating SiC/SiC CMCs - Some Benchmark Tests

- Advanced multi-component hafnia-rare earth silicate based turbine environmental barrier coatings being tested for up to 1150 h creep rupture
- Helped understand EBC-CMC creep, fatigue and environmental interactions, and modeling
Laser Thermomechanical Creep - Fatigue Tests of Advanced 2700°F+ EBC Systems

- APS, PVD and EB-PVD processed 2700°F bond coats and EBCs on SiC/SiC CMC: focus on creep, fatigue high heat flux testing at temperatures of 1316-1482°C+ (2400-2700°F+) – selected Examples

EB-PVD Rare Earth Silicate EBC/YbGdYSi bond coat on Hyper Therm CVI-MI

\[T_{EBC\ surface} \ 2850-3000°F \ (1600-1650°C) \]
\[T_{cmc\ back} \ at \ ~2600°F \ (1426°C) \]

Creep rate \(7.1 \times 10^{-6} \ 1/s \)

Laser Thermomechanical Creep - Fatigue Tests of Advanced 2700°F+ EBC Systems - Continued

- APS, PVD and EB-PVD processed 2700°F bond coats and EBCs on SiC/SiC CMC: focus on creep, fatigue high heat flux testing at temperatures of 1316-1482°C+ (2400-2700°F+) – Selected Examples

Fatigue Tested (furnace)

- PVD GdYSi(O) coated on CVI-MI SiC/SiC
 1316°C, 10ksi, 1000 h fatigue (3 Hz, R=0.05)

Fatigue Tested

- EB-PVD (RE$_2$Si$_2$-xO$_{7-x}$) EBC/HfO$_2$-Si bond coat on 3D CVI+PIP SiC/SiC (1482°C, 10ksi, 300 h SPLCF fatigue at 3 Hz, R=0.5; furnace tested)

Creep and Fatigue Tests with CMAS

- Air Plasma Sprayed APS YSi+Hf-RESilicate EBC Bond Coat series on CVI-MI SiC/SiC
 1400°C, at 10 ksi, 400 hr

- EB-PVD (HfRE$_2$Si$_2$-xO$_{7-x}$) EBC/GdYbSi(O) bond coat on CVI-MI SiC/SiC (with CMAS)
 1537°C, 10ksi, 300 h fatigue (3 Hz, R=0.05)
Laser Thermomechanical Creep - Fatigue Tests of Advanced 2700°F+ EBC Systems - Continued

- Benchmark fatigue testing at 2700°F of coating system
- Also demonstrating laser steam rig 500 hr at laser rig tests at 2700°F+ EBC temperatures
- Development towards 3000°F+ thin coatings

3hz fatigue testing at 10 ksi loading
Completed 500 hr testing in heat flux rig with steam
Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

- Develop Ultra High Temperature Ceramics and Coatings (UHTCC) based on HfCN and HfTaCN
- Focused on Hf-RE-Si-O-(CN) protective scales or coatings to improve oxidation resistance
- Evaluate and improve mechanical properties
- Incorporated atomistic modeling, and thermodynamic measurements and modeling
- Initiated the system testing and coating developments

Qi-June Hong and Axel van de Walle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations”, Physical Review B92, 020104-1 - 020104-6 (R) (2015).
Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems - continued

- Downselected initial $\text{HfC}_{0.54}\text{N}_{0.40}$ and $\text{HfC}_{0.5}\text{N}_{0.5}$ for evaluations
- Demonstration of calculation of HfCN bulk modulus using Density Function Theory (DFT), understanding the atomic bonding with dopants

Bulk Moduli For HfC, HfN and various compositions of HfCN were computed using the Vienna Ab initio Simulation Package (VASP).
Develop HfO$_2$ and Hf-RE Based Coatings or Protective Scales

- Based on HfO$_2$-HfSiO$_x$ and HfYb-SiO$_x$ systems for improved temperature capabilities and durability
- Evaluating HfOCN stability

Reduced SiO$_2$

Oxygen diffusivity, vacancy mechanism

DFT Modeling results (by Brian Good)
Summary

- Durable EBCs are critical to emerging SiC/SiC CMC component technologies
- Multicomponent EBC oxide/silicates being developed with higher stability and improved durability
- HfO$_2$-Si and RE-Si bond coats being developed for realizing 1482°C+ (2700°F+) temperature capabilities
 - Further temperature capability improvement can be improved using RE-Si+Hf bond coats
 - Multicomponent RE-Hf-silicate top coat also developed to improve combustion steam and CMAS resistance
 - Hf-Y/Yb-RE silicates system also being explored for higher temperature capabilities
- EBC-CMC system rig durability testing and demonstrations
- Ultra high temperature materials also benefit from the coating and material system technologies
Acknowledgements

The work was supported by NASA Transformational Tools and Technologies Project.

The authors are grateful to

- LME and LMC colleagues, Kang N. Lee, Craig Smith, Narottam Bansal, Valerie Wiesner and others for helpful discussions
- Ron Phillips for assisting thermomechanical tests
- John Setlock and Don Humphrey for assisting Thermogravimetric analysis (TGA) and oxidation tests
- Sue Puleo and Rick Rogers for X-ray analysis