Environmental Stability and Oxidation Behavior of HfO$_2$-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

Dongming Zhu, Serene Farmer, Terry R. McCue, Bryan Harder, Janet B. Hurst

Materials and Structures Division
NASA John H. Glenn Research Center
Cleveland, Ohio 44135

41st International Conference and Expo on Advanced Ceramics and Composites (ICACC’17)
January 22-27, 2017
NASA EBC and CMC System Development

- Emphasize temperature capability, performance and *long-term* durability
 - Highly loaded EBC-CMCs - Prime-reliant coatings
 - 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
 - 2700°F (1482°C) EBC bond coat technology for supporting next generation
 - Recession: <5 mg/cm² per 1000 h
 - Coating and component strength requirements: 15-30 ksi, or 100-207 MPa
 - Resistance to Calcium Magnesium Alumino-Silicate (CMAS), impact and erosion

Temperature Capability

<table>
<thead>
<tr>
<th>Year</th>
<th>Gen I</th>
<th>Gen II – Current commercial</th>
<th>Gen III</th>
<th>Gen. IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step increase in the material's temperature capability

- 2800°F combustor TBC
- 2500°F Turbine TBC
- 2700°F (1482°C) SiC/SiC CMC thin turbine EBC systems for CMC airfoils
- 2700°F (1482°C) Gen III SiC/SiC CMCs
- 2400°F (1316°C) Gen I and Gen II SiC/SiC CMCs
- 2000°F (1093°C), PtAl and NiAl bond coats

Increase in ΔT across T/EBC

- 3000°F+ (1650°C+)
- 2700°F (1482°C)

- 3000°F SiC/SiC CMC airfoil and combustor technologies
- 2700°F SiC/SiC *thin turbine* EBC systems for CMC airfoils

Ceramic Matrix Composite

Single Crystal Superalloy

(T/EBC) surface
Outline

• Advanced 2700°F capable EBC and bond coat developments
 - Rare Earth – Silicon, i.e., YbGd-Si (O) and YbGd-Lu-Si (O) and Hafnia-Si (HfO$_2$-Si) systems
 - Early systems cyclic oxidation results and Si composition optimizations
 - Focus on oxidation kinetics studies of selected EB-PVD coatings using TGA
 - Oxidation mechanisms and degradation mechanisms

• EBC - CMC system thermomechanical - environment testing, particularly using laser rigs
 - A Key step and capability for developments, and help composition optimization and

• Summary
NASA Advanced 2700°F Silicide Based Bond Coats – and EBC Systems Processing for Various Component Applications

- Advanced coating systems developed for various processing to improve Technology Readiness Levels (TRL)
- Composition ranges studied mostly from 50 – 80 atomic% silicon
 - PVD-CVD processing, for composition downselects - also helping potentially develop a low cost CVD or laser CVD approach
 - Compositions initially downselected for selected EB-PVD and APS coating composition processing

PVD-CVD

<table>
<thead>
<tr>
<th></th>
<th>YSi</th>
<th>YbGdYSi</th>
<th>GdYSi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrSi+Ta</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td></td>
</tr>
<tr>
<td>ZrSi+Y</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td></td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td>YbGdYSi</td>
<td>GdYSi</td>
<td></td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td>YbGdSi</td>
<td>GdYSi-X</td>
<td></td>
</tr>
<tr>
<td>HfSi + Si</td>
<td>YbGdSi</td>
<td>GdYSi-X</td>
<td></td>
</tr>
<tr>
<td>HfSi + YSi</td>
<td>YbGdSi</td>
<td>YbGdSi</td>
<td></td>
</tr>
<tr>
<td>HfSi+Ysi+Si</td>
<td>YbGdSi</td>
<td>YbGdSi</td>
<td></td>
</tr>
<tr>
<td>YbSi</td>
<td>YbGdSi</td>
<td>YbSi</td>
<td></td>
</tr>
<tr>
<td>HfSi + YbSi</td>
<td>YbGdSi</td>
<td>YbGdYbSi</td>
<td></td>
</tr>
<tr>
<td>GdYbSi(Hf)</td>
<td>YbYSi</td>
<td>YbYbSi</td>
<td></td>
</tr>
<tr>
<td>YYbGdSi(Hf)</td>
<td>YbYbSi</td>
<td>YbHfSi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YbHfSi</td>
<td>YbHfSi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YbHfSi</td>
<td>YbHfSi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YbHfSi</td>
<td>YbHfSi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YbSi</td>
<td>YbSi</td>
<td></td>
</tr>
</tbody>
</table>

EB-PVD

- HfO2-Si 1;
 - REHfSi
 - GdYSi
 - GdYbSi 2
 - GdYb-LuSi
 - NdYSi

APS*

- HfO2-Si
- YSi+RESilicate
- YSi+Hf-RESilicate

FurnaceLaser/CVD/PVD

- REHfSi
- Hf-RESilicate
 - Used in ERA components as part of bond coat system
- Hf-RE-Al-Silicate
 - Used in ERA components as part of bond coat system
- APS*: or plasma spray related processing methods

Process and composition transitions

Oxidation Kinetics and Furnace Cyclic Behavior of RESi EBC Bond Coats -

- Some early multi-component PVD processed systems showed excellent oxidation resistance and furnace cyclic test (FCT) durability at 1500°C
- FCT and steam tests also performed for more advanced RESiO-Hf systems

![Graph showing specific weight gain vs. time for YGdSi bond coat on SiC/SiC, 1500°C](image)

Oxidation kinetics

An example of cross-sectional TGA tested specimen -
Oxidation Kinetics and Furnace Cyclic Behavior of RESi EBC Bond Coats - Continued

- Some early multi-component PVD processed systems showed excellent oxidation resistance and furnace cyclic test (FCT) durability at 1500°C
- FCT and steam tests also performed for more advanced RESiO-Hf systems
- FCT durability found to be closely related to temperature capability and oxidation resistance of the coating systems

An example of cross-section TGA tested specimen

FCT life, Testing in Air at 1500°C, 1 hr cycles
Oxidation Resistance of Plasma sprayed Based HfO$_2$-Si

- TGA weight change measurements in flowing O$_2$
- Parabolic oxidation kinetics generally observed
- Solid-state reaction is also involved with the systems, and more complex behavior at 1400 and 1500°C
- Improved oxidation resistance through APS plasma spray powder processing optimization (AE10219 II; Sulzer/Oerlikon Metco)

![Plasma spray processed microstructure](image)

- AE 10219: first Generation HfO$_2$-30wt%Si composite APS powders
- AE 10218 is HfO$_2$-30wt%Si composite APS powders used in NASA ERA liner component demonstrations
- AE 10219 Clad II is second Generation HfO$_2$-30wt%Si composite APS powders
Microstructures of Furnace Cyclic Tested GdYbSi(O) EBC Systems

- Cyclic tested cross-sections of early PVD processed YbGdSi(O) bond coat
- Self-grown rare earth silicate EBCs and with some RE-containing SiO\textsubscript{2} rich phase separations
- Relatively good coating adhesion and cyclic durability

1500°C, in air, 500, 1 hr cycles

- Complex coating architectures after the testing
- Designed with EBC like compositions – Self-grown EBCs

Composition (mol\%) spectrum Area #1
- SiO\textsubscript{2} 67.98
- Gd2O\textsubscript{3} 11.95
- Yb2O\textsubscript{3} 20.07

Composition (mol\%) spectrum Area #2
- SiO\textsubscript{2} 66.03
- Gd2O\textsubscript{3} 10.07
- Yb2O\textsubscript{3} 23.9
Microstructures of Cyclic Tested GdYbSi(O) EBC Systems-
Continued

- Cyclic tested cross-sections of early PVD processed YbGdSi(O) bond coat
- Self-grown rare earth silicate EBCs and with some RE-containing SiO₂ rich phase separations
- Relatively good coating adhesion and cyclic durability

1500°C, in air, 500, 1 hr cycles

Outlined area

<table>
<thead>
<tr>
<th>Composition (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>Gd₂O₃</td>
</tr>
<tr>
<td>Yb₂O₃</td>
</tr>
</tbody>
</table>

Spot

<table>
<thead>
<tr>
<th>Composition (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>Gd₂O₃</td>
</tr>
<tr>
<td>Yb₂O₃</td>
</tr>
</tbody>
</table>
Experimental: NASA Yb,Gd,Y Rare Earth Silicate EBCs

- Yb,Gd(Nd),Y (or RE-Silicate) Multi-Component Rare Earth Silicate EBCs
- Sometime using fine alternating HfO$_2$ and the silicates for top coats
- EB-PVD bond coat systems mostly focused on YbGdSi, YbGd-LuSi, and YbNdSi, and HfO$_2$-Si
- Initial compositions optimized for the EBC bond coats: RE:Si 1:2; and Hf:Si 1:2 – 1:1
- Coating processed on SiC/SiC ceramic matrix composites for studies
- Processed using Directed Vapor EB-PVD at Directed Vapor Technologies
Experimental: Oxidation and Durability Tests

— Test specimens with dimensions 25 mm diameter disc specimens for oxidation, laser heat flux and furnace cyclic test (FCT) – briefly reviewed
— Thermogravimetric analysis (TGA), using 0.5”x1” CVI SiC/SiC specimens
— Laser long-term thermomechanical fatigue + steam/CMAS water vapor cyclic test using 0.5”x6” dogbone specimens
Oxidation Kinetics of EB-PVD Processed YbGdSi(O) Based Coating

- Oxidation kinetics obtained at various temperatures in flowing O$_2$ for YbGdSi(O) (not necessarily processing optimized)
- Parabolic oxidation kinetics generally observed after initial transient stages
- Activation energy determined 110 kJ/mol
Oxidation Kinetics Comparisons of Several Advanced EB-PVD Processed EBC Systems Compared

- The EB-PVD Systems showed comparable oxidation rates and good oxidation resistance, tested up to 500 h
- Kinetics compared with LuGdSi (O) and HfO$_2$-Si (O) systems
- Further process improvements help improved oxidation resistance and durability

![Graph showing oxidation kinetics comparison](image)

- Activation energy 110.6 kJ/mol
- Activation energy 136.5 kJ/mol
Microstructures of the Advanced EBCs after the Oxidation Tests

– RE-Si system: forming RE silicate “scales”, fully compatible with EBCs
– Reaction and oxidation mechanisms are being further studied, particularly RE containing SiO$_2$ phase stability
– Further process improvements can help improve the oxidation resistance and durability

Cross-section micrograph of YbGdSi(O) tested at 1500°C, 500hr
Microstructures of the Advanced EBCs after the 500 hr Oxidation Tests in O\textsubscript{2} - Continued

- HfO\textsubscript{2}-Si bond coat: forming HfSiO\textsubscript{x} based scales bond coat, compatible with EBCs
- Reaction and stability being studied
- Further process improvements can help improve the oxidation resistance and durability

Cross-section micrograph of HfO\textsubscript{2}-Si tested at 1500°C, 500hr
Microstructures of the Advanced EBCs after the Oxidation Tests - Continued

- Surface Morphologies of YbGdSi Bond Coat only on CMC after Oxidation at 1400°C, 300 hr

Area – all image region

Composition (mol%)
- GdO₃: 3.49
- Yb₂O₃: 13.84
- SiO₂: 82.67

Area A Composition

Composition (mol%)
- GdO₃: 7.73
- Yb₂O₃: 30.54
- SiO₂: 61.73
Microstructures of the Advanced EBCs after the Oxidation Tests - Continued

- Surface Morphologies of YbGdSi Bond Coat only on CMC after Oxidation at 1400°C, 300hr
- Observed SiO₂ rich phase separation with fine rare earth silicate phases
- Solubility of HfO₂ and rare earth oxides/silicates also being studied using TEM
CMAS Resistance for the Rare Earth-Silicon Coatings

- CMAS resistance of Yb-GdSi (O) at 1500°C, 100 hr
- Higher stability and CMAS resistance observed due to its High Melting Point Coating Compositions
- Observed the Apatite phase formation
High Heat Flux Thermomechanical fatigue Tests of Advanced NASA EBC-Bond Coats Systems on CMCs

- Laser High Heat Flux thermomechanical fatigue testing of a HfO$_2$-Si and NASA advanced EBC baseline with steam at 3 Hz, 2600-2700°F, and 69 MPa maximum stress with stress ratio 0.05, completed 500 h testing

- $T_{\text{surface}} = 1500-1600^\circ\text{C}$
- $T_{\text{interface}} = 1320-1350^\circ\text{C}$
- Heat Flux = 170 W/cm2
- Specimen had some degradations

3hz fatigue testing at 10 ksi loading
Completed 500 hr testing

Testing proving vital failure mechanisms in a simulated test environments
NdYb silicate EBC-RESi bond coat EBC coatings on 3D-architecture CVI-PIP SiC-SiC CMC (EB-PVD processing), tested in combined CMAS and steam thermomechanical fatigue, completed ~300 h testing.

Steam and CMAS attacked coating surface at 2700°F.
High Heat Flux Thermomechanical fatigue Tests of Advanced NASA EBC-Bond Coats Systems on CMCs - Continued

- NdYb silicate EBC-RESi bond coat EBC coatings on 3D architecture CVI-PIP SiC-SiC CMC (EB-PVD processing), tested in combined CMAS and steam thermomechanical fatigue, completed ~300 h testing

Oxide Component Mole Conc.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yb2O3</td>
<td>3.90</td>
</tr>
<tr>
<td>Nd2O3</td>
<td>6.36</td>
</tr>
<tr>
<td>Y2O3</td>
<td>1.00</td>
</tr>
<tr>
<td>CaO</td>
<td>2.30</td>
</tr>
<tr>
<td>SiO2</td>
<td>84.09</td>
</tr>
<tr>
<td>MgO</td>
<td>2.36</td>
</tr>
</tbody>
</table>
| SiO2 rich phases separation in CMAS Nd and Yb dissolutions

Steam and CMAS attacked coating surface at 2700°F
Summary

• RE - Silicon and HfO$_2$-Si bond coats with multicomponent rare earth silicate EBCs processed using EB-PVD, and the oxidation kinetics investigated

• The coatings generally showed very good oxidation and cyclic resistance for CMCs with targeted designed bond coat compositions, at 1500°C and up to 500 h tests

• The EBC bond coats grow rare earth silicates or HfSiO$_x$ “scales”, compatible with the EBC systems

• Stability of RE, Hf containing SiO$_2$ rich phases from the phase separation being further evaluated

• Long-term environment durability testing conducted to evaluate the coatings in more complex load, CMAS and/or steam environments, simulating turbine airfoil conditions

• The results helping further design and processing improved environmental barrier coating systems, for achieving more robust, prime-reliant EBC systems
Acknowledgements

The work was supported by NASA Transformational Tools and Technologies Project.

The authors are grateful to

- LME and LMC colleagues, Kang N. Lee, Gustavo Costa, Narottam Bansal, Valerie Wiesner and others for helpful discussions
- Ron Phillips for assisting thermomechanical tests
- John Setlock and Don Humphrey for assisting Thermogravimetric analysis (TGA) and oxidation tests
- Sue Puleo and Rick Rogers for X-ray analysis