Thermochemistry of CaO-MgO-Al_{2}O_{3}-SiO_{2} (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

GUSTAVO COSTA AND DONGMING ZHU

Environmental Effects and Coatings Branch
Materials and Structures Division
NASA Glenn Research Center, Cleveland, OH 44135
gustavo.costa@nasa.gov
Outline of Presentation

• Thermal and Environmental Barrier Coating Systems

• Experimental
 - Sample preparation and reaction with CMAS

• Results
 - Thermodynamic modeling of YSZ-CMAS system
 - Characterization:
 1 - Pristine NASA composition CMAS by XRD, ICP-OAS and DSC
 2 - CMAS reacted with the hollow tube coating specimens by SEM-EDS and XRD

• Summary
Baseline ZrO_2-(7-8)wt$\%$Y$_2$O$_3$ and Rare Earth Doped-Low Conductivity Thermal Barrier Coating Systems - Continued

Baseline ZrO_2-(7-8) wt$\%$Y$_2$O$_3$:
- Relatively low intrinsic thermal conductivity ~2.5 W/m-K
- High thermal expansion to better match superalloy substrates
- Good high temperature stability and mechanical properties
- Additional conductivity reduction by micro-porosity

Low Conductivity Defect Cluster Thermal Barrier Coatings

— Multi-component oxide defect clustering approach

e.g.: ZrO_2/HfO$_2$-Y$_2$O$_3$-Nd$_2$O$_3$(Gd$_2$O$_3$,Sm$_2$O$_3$)-Yb$_2$O$_3$(Sc$_2$O$_3$) systems

Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes

— Defect clusters associated with dopant segregation
— The 5 to 100 nm size defect clusters for significantly reduced thermal conductivity (0.5-1.2 W/m-K) and improved stability
— Advanced TEBC systems for Ceramic Matrix Composites use the low k based compositions

TEBCs-CMAS Degradation is of Concern with Increasing Operating Temperatures
Experimental: sample preparation and heat treatment

- Air plasma sprayed coating (0.030” thickness) specimens on to 1/8” diameter graphite bar substrates then 1500 °C, 5 h sintering, resulting hollow tubes.
- NASA composition CMAS used for reaction at 1300 °C for 5h.

<table>
<thead>
<tr>
<th>Hollow Tube composition mole (%)</th>
<th>ρ (%) *</th>
<th>Average pore vol. (mm³) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO₂-12Y₂O₃</td>
<td>90(3)</td>
<td>35(2)</td>
</tr>
<tr>
<td>ZrO₂-18Y₂O₃</td>
<td>81(3)</td>
<td>-</td>
</tr>
<tr>
<td>HfO₂-7Dy₂O₃</td>
<td>89(3)</td>
<td>21(3)</td>
</tr>
<tr>
<td>ZrO₂-9Y₂O₃-4.5Gd₂O₃-4.5Yb₂O₃</td>
<td>100(3)</td>
<td>3(7)</td>
</tr>
<tr>
<td>ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃</td>
<td>90(3)</td>
<td>23(4)</td>
</tr>
<tr>
<td>ZrO₂-3Y₂O₃-1.5Nd₂O₃-1.5Yb₂O₃-0.3Sc₂O₃</td>
<td>90(3)</td>
<td>20(3)</td>
</tr>
<tr>
<td>ZrO₂-3Y₂O₃-1.5Sm₂O₃-1.5Yb₂O₃</td>
<td>98(3)</td>
<td>4(3)</td>
</tr>
</tbody>
</table>

*(ρgeometric*100/ρHe). **ρgeometric-ρHe.

(1:10 CMAS to sample mass ratio, concentration of 70-150 mg/cm²)

Hollow 12YSZ tube samples: (A) pristine; (B) before heat treatment in which it was half filled with CMAS powder, wrapped and sealed with Pt foil; (C) after heat treatment at 1310 °C for 30 min and unwrapped.
Results: characterization of NASA composition CMAS (as processed) before reaction

Phase content (Wt. %)
- Amorphous – 66.4 ± 0.9
- SiO$_2$ – 3.5 ± 0.1
- Ca$_2$Mg$_{0.46}$Al$_{0.99}$Si$_{1.52}$O$_7$ – 23.5 ± 0.7
- CaSiO$_3$ – 6.6 ± 0.4

Chemical analysis of the as-received NASA CMAS by ICP-OAS

<table>
<thead>
<tr>
<th>Element</th>
<th>Amount (wt. %)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Mg</td>
<td>3.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Al</td>
<td>6.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Si</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>5.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Ni</td>
<td>1.10</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Trace elements found but not quantified are Ba, Cr, Cu, K, Mn, Na, Sr, Ti, Zr

X-ray diffraction patterns of the as-received CMAS sample.

DSC traces of CMAS during **heating** and cooling up to 1500 °C at 5 °C/min.

DSC traces of CMAS mixed with 18YSZ (1:2 mass ratio) during **heating** up to 1500 °C at 5 °C/min.
Results: Thermochemical modeling of YSZ – CMAS system using Thermocalc and TCOX6 database

Calculated phase diagram of CMS-YSZ system.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>35</td>
</tr>
<tr>
<td>MgO</td>
<td>8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>7</td>
</tr>
<tr>
<td>SiO₂</td>
<td>45</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3</td>
</tr>
<tr>
<td>NiO</td>
<td>1</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>82</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>18</td>
</tr>
</tbody>
</table>

Input oxide amounts

Fluoride

- **Component:** CaO, MgO, SiO₂, ZrO₂, Y₂O₃
- **Mole:** 2.3 mol% Y₂O₃

Baseline TBC T - 1316.85 °C

- **Component:** CaO, MgO, FeO₁.₅, AlO₁.₅, NiO, SiO₂, ZrO₂, Y₂O₃
- **Mole:** 8.1e-3, 5.1e-5, 8.6e-8, 3.8e-3, 9.7e-1, 1.8e-2

ZrO₂-tetragonal

- **Component:** CaO, MgO, FeO₁.₅, AlO₁.₅, NiO, SiO₂, ZrO₂, Y₂O₃
- **Mole:** 8.1e-3, 5.1e-5, 8.6e-8, 3.8e-3, 9.7e-1, 1.8e-2

Apatite

- **Component:** CaO, MgO, FeO₁.₅, AlO₁.₅, NiO, SiO₂, ZrO₂, Y₂O₃
- **Mole:** 1.1e-1, 5.1e-5, 8.6e-8, 3.8e-3, 9.7e-1, 1.8e-2

Ionic_liq#2

- **Component:** CaO, MgO, FeO₁.₅, AlO₁.₅, NiO, SiO₂, ZrO₂
- **Mole:** 2.8e-1, 9.3e-2, 3.8e-1, 9.3-1, 2.2e-2, 2.7e-2
Results: SEM cross-section images at low magnification (lower cut section)

SEM cross – sectional electron images of the lower section of the ceramic hollow tube samples reacted with CMAS at 1300 °C for 5 h.
Results: **12YSZ lower section of the hollow tube reacted with CMAS.**

SEM image of (reacted region) at high magnification.

XRD pattern of the ground hollow tube.

cubic, YSZ

Grains 1-3

<table>
<thead>
<tr>
<th></th>
<th>ZrO<sub>2</sub></th>
<th>Y<sub>2</sub>O<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal mole (%)</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>EDS mole (%)</td>
<td>81 (1)</td>
<td>11.9(2)</td>
</tr>
</tbody>
</table>

Spots 1-3.

Elemental content from EDS.

Spot 4.

Grain Boundary Composition - mole (%)

<table>
<thead>
<tr>
<th></th>
<th>Zr</th>
<th>Y</th>
<th>Ca</th>
<th>Mg</th>
<th>Al</th>
<th>Fe</th>
<th>Ni</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
<td>35.2%</td>
<td>6.6%</td>
<td>5.7%</td>
<td>2.4%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Nominal mole (%) 88 12
EDS mole (%) 81 (1) 11.9(2)

Spots 1-3.
Results: 18YSZ lower section of the hollow tube reacted with CMAS.

SEM image at high magnification.

X-ray diffraction of the ground hollow tube.

Grain 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Nominal mole (%)</th>
<th>EDS mole (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO₂</td>
<td>81</td>
<td>75(2)</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>18</td>
<td>19(1)</td>
</tr>
</tbody>
</table>

Elemental content from EDS.

cubic, YSZ + apatite phases

Grain Boundary Composition - mole (%)

Spot 1.

Spot 2.

Spot 3.
Results: 7DySH lower section of the hollow tube reacted with CMAS.

SEM image at high magnification.

Grain Composition - mole (%)

<table>
<thead>
<tr>
<th>Grain 2</th>
<th>HfO₂</th>
<th>Dy₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal mole (%)</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>EDS mole (%)</td>
<td>85(5)</td>
<td>7(1)</td>
</tr>
</tbody>
</table>

Monoclinic and cubic, DySH

XRD pattern of the ground hollow tube.

Elemental content from EDS.
Results Rare Earth Content versus apatite phase formation.

ZrO$_2$-18RE$_2$O$_3$ (RE = Y, Gd and Yb)

ZrO$_2$-18Y$_2$O$_3$

ZrO$_2$-13.9RE$_2$O$_3$ (RE = Y, Gd and Yb)

ZrO$_2$-12Y$_2$O$_3$

HfO$_2$-6.3Dy$_2$O$_3$

ZrO$_2$-6.3RE$_2$O$_3$ (RE = Y, Nd, Yb and Sc)

ZrO$_2$-6.0RE$_2$O$_3$ (RE = Y, Sm and Yb)

XRD patterns of the ground hollow tubes reacted with CMAS at 1310 °C for 5 h (lower cut section).
Results: content of the Rare-earth in the glass/silicate phase.

Depedence of the Rare-earth content in the glass/silicate phase versus Rare-earth content in the coating.
Results: content of the Rare-earth in the glass/silicate phase.

ZrO$_2$-3.0Y$_2$O$_3$-1.5Nd$_2$O$_3$-1.5Yb$_2$O$_3$-0.3Sc$_2$O$_3$

Ionic potential trend of RE

ZrO$_2$-REO$_{1.5}$ - ΔHf more endothermic

Radius size trend of RE

ZrO$_2$-3.0Y$_2$O$_3$-1.5Sm$_2$O$_3$-1.5Yb$_2$O$_3$

ZrO$_2$-9.6Y$_2$O$_3$-2.2Gd$_2$O$_3$-2.1Yb$_2$O$_3$
Summary

• Thermochemical reactions between CMAS and EBC and TBC materials were studied at 1310 °C for 5h.
• CMAS penetrated the samples at the grain boundaries and dissolved the EBC/TBC material to form silicate glassy and orthosilicate crystalline phases containing the rare-earth elements.
• Apatite crystalline phase was formed in the samples with rare-earth content higher than 12 mole (%) total of Rare-earths in the reaction zone.
• 18YSZ, 7DySH and ZrO_2-9.5Y_2O_3-2.2Gd_2O_3-2.1Yb_2O_3 samples have lower reactivity or more resistance to CMAS than the other coating compositions of this work.

Acknowledgements

This work was supported by NASA Transformational Tools and Technologies Project, and also partially supported by the NASA-Army Research Laboratory Collaborative High Temperature Functionally Graded Sandphobic Coating and Surface Modification Research Project under NASA-Army Space Act Agreement SAA3-1460-1.