NASA Plant Research for Life Support in Space

Raymond M. Wheeler
NASA Exploration Research and Technology Directorate
Kennedy Space Center, Florida, USA

IPSAM, June 2017, Limerick
Human Life Support Requirements:

Inputs

<table>
<thead>
<tr>
<th>Daily Rqmt.</th>
<th>(% total mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>0.83 kg</td>
</tr>
<tr>
<td>Food</td>
<td>0.62 kg</td>
</tr>
<tr>
<td>Water (drink and food prep.)</td>
<td>3.56 kg</td>
</tr>
<tr>
<td>Water (hygiene, flush laundry, dishes)</td>
<td>26.0 kg</td>
</tr>
</tbody>
</table>

TOTAL 31.0 kg

Outputs

<table>
<thead>
<tr>
<th>Daily Rqmt.</th>
<th>(% total mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>1.00 kg</td>
</tr>
<tr>
<td>Metabolic solids</td>
<td>0.11 kg</td>
</tr>
<tr>
<td>Water (metabolic / urine)</td>
<td>29.95 kg</td>
</tr>
<tr>
<td>Water (hygiene / flush)</td>
<td>29.95 kg</td>
</tr>
<tr>
<td>Water (laundry / dish)</td>
<td>29.95 kg</td>
</tr>
<tr>
<td>Water (latent)</td>
<td>29.95 kg</td>
</tr>
</tbody>
</table>

TOTAL 31.0 kg

Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document

Food assumed to be dry except for chemically-bound water.
International Space Station Life Support Systems

Source: Jim Reuter, NASA MSFC
Plants for “Bioregenerative” Life Support

Metabolic Energy

HUMANS

food
(CH₂O) + O₂ → CO₂ + H₂O

Clean Water → Waste Water

PLANTS

food
(CH₂O) + O₂* + H₂O ← CO₂ + 2H₂O*

Clean Water ← Waste Water

Light
Bioregenerative Life Support Testing
Around the World

1960
- US Military
- USSR Military

1980
- Russia - Inst. for Biomedical Problems - IMPB (Moscow)
- Russia - Inst. of Biophysics - IBP (Krasnoyarsk, Siberia)
- US NASA
- NASA (CELSS) NASA (ALS) NASA (LSHS) AES/HDU
- Japan Aerosp. Lab.; Inst. Env. Sci. (IES); JAXA Chofu
- France Cadarache
- European Space Agency MELISSA

2000
- University Studies (US, Europe, Japan, Canada)
- Canada Univ. Guelph / CSA
- China Natl. Space Ag.
Crop Considerations for Space

- High yielding and nutritious (CHO, protein, fat, micronutrients)
- High harvest index (edible / total biomass)
- Horticultural requirements
 - planting, watering, harvesting, pollination, propagation
- Environmental requirements
 - lighting, temperature, mineral nutrition, CO₂
- Processing requirements
- Dwarf or low growing types
Some Crops for Life Support

<table>
<thead>
<tr>
<th>Tibbitts and Alford (^a)</th>
<th>Hoff, Howe, and Mitchell (^b)</th>
<th>Salisbury and Clark (^c)</th>
<th>Russian BIOS-3 Testing (^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>Wheat</td>
<td>Wheat</td>
<td>Wheat</td>
</tr>
<tr>
<td>Soybean</td>
<td>Potato</td>
<td>Rice</td>
<td>Potato</td>
</tr>
<tr>
<td>Potato</td>
<td>Soybean</td>
<td>Sweetpotato</td>
<td>Carrot</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Rice</td>
<td>Broccoli</td>
<td>Radish</td>
</tr>
<tr>
<td>Sweetpotato</td>
<td>Peanut</td>
<td>Kale</td>
<td>Beet</td>
</tr>
<tr>
<td>Peanut</td>
<td>Dry Bean</td>
<td>Lettuce</td>
<td>Nut Sedge</td>
</tr>
<tr>
<td>Rice</td>
<td>Tomato</td>
<td>Carrot</td>
<td>Onion</td>
</tr>
<tr>
<td>Sugar Beet</td>
<td>Carrot</td>
<td>Canola</td>
<td>Cabbage</td>
</tr>
<tr>
<td>Pea</td>
<td>Chard</td>
<td>Soybean</td>
<td>Tomato</td>
</tr>
<tr>
<td>Taro</td>
<td>Cabbage</td>
<td>Peanut</td>
<td>Canola</td>
</tr>
<tr>
<td>Winged Bean</td>
<td>Peanut</td>
<td>Chickpea</td>
<td>Pea</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Chard</td>
<td>Lentil</td>
<td>Dill</td>
</tr>
<tr>
<td>Onion</td>
<td>Cabbage</td>
<td>Tomato</td>
<td>Cucumber</td>
</tr>
<tr>
<td>Strawberry</td>
<td></td>
<td>Onion</td>
<td>Salad spp.</td>
</tr>
</tbody>
</table>

\(^a\) Tibbitts and Alford (1982); \(^b\) Hoff, Howe, and Mitchell (1982); \(^c\) Salisbury and Clark (1996); \(^d\) Gitelson and Okladnikov (1994)—diet also included supplemental animal protein and sugar.
Crop Selection and Breeding for Space
(Utah State University)

Selection of Existing Rice Genotypes

Wheat Breeding for Short Growth and High Harvest Index

'Sapogee' Wheat

'Perigee' Wheat
Overexpression of FT flowering gene in plums (USDA researchers) resulted in dwarf growth habit and early flowering
Water and Nutrients for Growing Crops

Recirculating Hydroponics

Conserve Water & Nutrients
Eliminate Water Stress
Optimize Mineral Nutrition
Facilitate Harvesting

Root Zone Crops in Nutrient Film Technique (NFT)

Evapotranspiration from Plant Stand (potato)

First Study
655 μmol m\(^{-2}\) s\(^{-1}\) PAR

Second Study
865 μmol m\(^{-2}\) s\(^{-1}\) PAR

Water, Nutrient, and pH Control

High Yields from NASA Sponsored Studies

Wheat - 3-4 x World Record
Potato - 2 x World Record
Lettuce - Exceeded Commercial Yield Models

Canopy CO₂ Uptake / O₂ Production
(20 m² Soybean Stand)

CO_2 Exchange Rates of Soybean Stands

Wheeler et al., 2004. EcoEngineering.
Effect of CO$_2$ Concentration on Photosynthesis (potato)

Similar results for wheat and soybean

Optimal Concentration

CO$_2$ Compensation Point

CO$_2$ Compensation Point

$y = 0.15x - 14.6$

$R^2 = 0.99$

(97)

Canopy / Stand Ethylene Production

A

Wheat
Soybean
Lettuce
Potato

Ethylene Concentration (ppb)

Days After Planting

B

Wheat
Soybean
Lettuce
Potato

Biomass (kg)

Days After Planting

C

Wheat
Soybean
Lettuce
Potato

Ethylene / Biomass (ppb/kg)

Days After Planting

Wheeler et al. 2004. HortScience
Ethylene in Closed Systems

Epinastic Wheat Leaves at ~120 ppb

Epinastic Potato Leaves at ~40 ppb

(Wheeler et al., 2004 HortScience)
NASA’s Biomass Production Chamber (BPC)
Early Vertical Agriculture!

External View - Back

20 m² growing area; 113 m³ vol.; 96 400-W HPS Lamps; 400 m³ min⁻¹ air circulation; two 52-kW chillers

Control Room

Hydroponic System
NASA’s Biomass Production Chamber (BPC)
Wheat
(Triticum aestivum)
Soybean
(Glycine max)
Lettuce
(Lactuca sativa)
Potato
(Solanum tuberosum)
Automation Technologies for CEA

ALSARM Robot in NASA Biomass Production Chamber
Electric Lighting Considerations

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Conversion Efficiency</th>
<th>Lamp Life (hrs)</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent/Tungsten**</td>
<td>5-10%</td>
<td>2000</td>
<td>Intermd.</td>
</tr>
<tr>
<td>Xenon</td>
<td>5-10%</td>
<td>2000</td>
<td>Broad</td>
</tr>
<tr>
<td>Fluorescent***</td>
<td>20%</td>
<td>5,000-20,000</td>
<td>Broad</td>
</tr>
<tr>
<td>Metal Halide</td>
<td>25%</td>
<td>20,000</td>
<td>Broad</td>
</tr>
<tr>
<td>High Pressure Sodium</td>
<td>30-35%</td>
<td>25,000</td>
<td>Intermd.</td>
</tr>
<tr>
<td>Low Pressure Sodium</td>
<td>35%</td>
<td>25,000</td>
<td>Narrow</td>
</tr>
<tr>
<td>Microwave / RF Sulfur</td>
<td>35-40%+</td>
<td>?</td>
<td>Broad</td>
</tr>
<tr>
<td>LEDs (white)</td>
<td>30-40%</td>
<td>50,000 ?</td>
<td>Broad</td>
</tr>
<tr>
<td>LEDs (red and blue)****</td>
<td>>40%</td>
<td>50,000 ?</td>
<td>Narrow</td>
</tr>
</tbody>
</table>

* Approximate values.

** Tungsten halogen lamps have broader spectrum.

*** For VHO lamps; lower power lamps with electronic ballasts last up to ~20,000 hrs.

**** State-of-Art Blue and Red LEDs most efficient.
Light Emitting Diodes (LEDs)

- **Red**...photosynthesis
- **Blue**...photomorphogenesis
- **Green**...human vision

North American Patent for Using LEDs to Grow Plants Developed with NASA Funding at University of Wisconsin!
Solar Collector / Fiber Optics For Plant Lighting

Up to 400 W light delivered to chamber (40-50% of incident light)
Takashi Nakamura, Physical Sciences Inc.

2 m² of collectors on solar tracking drive (NASA Kennedy Space Center, Florida)

Nakamura et al. 2010. Habitation
Photosynthetically Active Radiation (mol m$^{-2}$ d$^{-1}$)

Crop Yield (g m$^{-2}$ d$^{-1}$)

Includes:
- Wheat (4)
- Soybean (4)
- Potato (4)
- Lettuce (3)
- Tomato (2)

Light and Crop Yield

Solar Collectors for Crop Production

Buried Plant Growth Chambers

Inflatable Greenhouses

Human Habitat

Composting Facility
University of Arizona Lunar / Mars Greenhouse
Deployable Mars Greenhouse - Low Pressure Systems
Figure 11: The daily integrated total, direct, and diffuse PPF versus latitude and Martian Sol for two Mars years. The labeled sols correspond to the start of each season on Mars. For example, sol 150 corresponds to the Northern Autumnal equinox.
Hypobaric Testing with Plants

Testing at:
NASA KSC
Univ. of Guelph
Texas A&M Univ. ⇒
Univ. of Florida
Lettuce, radish, and wheat plants exposed to rapid pressure drop (27 days old)
Phase Change of Water

Pressure (kPa)

Temperature (°C)

Vapour

Liquid

Plants Held Here for 30 min

Triple Point of Water 0.01°C and 0.6 kPa

0.01°C and 0.6 kPa
Some other Benefits of Plants in Space

- Fresh Foods to Augment the Diet
 - Colors
 - Texture
 - Flavor
 - Nutrients
- Bright Light
- Aromas
- Gardening Activity
Plant Chamber at US South Pole Station

Plants and Human Well-Being
Testing Crops in Human Habitats

Habitat Demonstration Unit (HDU) Test 2011

Plant Atrium or Growing Shelf

NASA's HDU at Desert Test Site

HDU Test 2012
Plant Testing on the International Space Station—VEGGIE Plant Chamber
Sequential Development for Space Agriculture

VEGGIE 0.15 m²

“Salad Machine” Growth Unit (2.0 m²)

MPLM or Cygnus-like Module (10 m²)

Surface System Food Production Module (20 m²)
Some Lessons Learned from NASA CEA Research

- 20-25 m² of crops could provide all the O₂ for one person, and 40-50 m² all of the food (dietary energy)
- Better adapted crops are needed—short growth, high harvest index, improved nutrition—Use genetic engineering?
- Lighting is key to sustaining high yields
- CEA systems require large quantities of water (e.g., 5 L m⁻² d⁻¹) and this water must be recycled.
- Up to 90 kg of fertilizer would needed per person per year, emphasizing the need for recycling nutrients.
- Plants can provide psychological benefits to humans—this needs further study.
- The use of plants for life support will likely evolve sequential, starting with small, supplemental food production and expanding for future missions.
As we explore sustainable living for space, we will learn more about sustainable living on Earth.
One of our Kennedy Space Center Researchers!

Michelle McKeon-Bennett, 2004, Space Life Science Laboratory, KSC, Florida
Effect of Light on Productivity and Crop Area Requirements

- **Light or PAR (mol m\(^{-2}\) day\(^{-1}\))**
- **Productivity (g m\(^{-2}\) day\(^{-1}\))**
- **Area Required (m\(^{2}\) / person)**