Uncertainties in Coastal Ocean Color Products:
Impacts of Spatial Sampling

Nima Pahlevan\textsuperscript{a,b}, Sudipta Sarkar\textsuperscript{a,b}, Bryan A. Franz\textsuperscript{a}

\textsuperscript{a}NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD, 20771
\textsuperscript{b}Science Systems and Applications, Inc., 10210 Greenbelt Rd, Suite 600,
Lanham, MD 20706

ABSTRACT

With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS and VIIRS OC products from 30m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of $R_n$ products in coastal waters. The simulations were carried out for OLI scenes “scanned” for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the $R_n(443)$, $R_n(482)$, $R_n(561)$, $R_n(655)$, [Chla], $K_d(482)$, and $b_{bp}(655)$ products, respectively. It is also found that, depending on in-water spatial variability and the sensor’s footprint size, the errors for an
in-situ validation location in coastal areas can reach as high as ±18%. We conclude that
a) expected biases induced by the spatial sampling in product intercomparisons are
mitigated when products are averaged over at least 7 km × 7 km windows, b) VIIRS
observations, with improved consistency in cross-track spatial sampling yields more
precise calibration/validation results than MODIS, and c) use of a single pixel centered
on in-situ coastal sites provides an optimal sampling size for validation efforts. These
findings will have implications for enhancing our understanding of uncertainties in ocean
color retrievals and for planning of future calibration/validation exercises.

1. INTRODUCTION

Following four decades of research and development, ocean color (OC) products
from spaceborne remote sensing instruments now play a critical role in the management
and monitoring of coastal ecosystems, which are under increased stress due to human
population growth in coastal areas and associated anthropogenic impacts such as
pollution and agricultural run-off (McGranahan et al. 2007; Nixon 1995; Vitousek et al.
1997; Vörösmarty et al. 2000). Repeatable, timely, and reliable OC products provide a
viable and efficient tool for monitoring of these coastal ecosystems. Coastal OC products
provide a synoptic view of coastal ecosystems at an instance of time and when
assimilated with coupled hydrodynamic-ecosystem coastal models (Allen et al. 2008;
Gohin et al. 2005; IOCCG 1997; Natvik and Evensen 2003; Ouillon et al. 2004) allow for
nowcasting and forecasting of environmental conditions to aid in hazard mitigation
efforts (e.g., occurrence of harmful algal blooms). Within the suite of OC products
distributed by NASA, the remote sensing reflectance (Rrs; defined as the ratio of water-
leaving radiance and the total downwelling irradiance just above the surface) plays a central role in determining the optical and biogeochemical properties of coastal oceans.

These observations and products, however, come from various satellite sensors with known, partially known, or unknown uncertainties in their radiometric observations or derived geophysical products. These sensors and their processing approaches are managed by various space agencies (http://www.ioccg.org), and despite international efforts to coordinate satellite ocean color programs (e.g., http://ceos.org), the derived products can be expected to differ due to uncertainties associated with sensor design and calibration and geophysical retrieval algorithms. Examples of satellite ocean color sensors are the Sea-viewing Wide Field-of-view Sensor on board Orbview-2 (McClain et al. 2004; O'Reilly et al. 1998), the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both Aqua and Terra platforms (Esaias et al. 1998), and the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Preparatory Partnership (SNPP). To ensure climate-quality products and consistent data record, the OC products are validated against in-situ observations, and individual satellite records are compared over their common mission overlapping periods. Each of these comparison methods carries unique uncertainties.

The in-situ $R_m$ measurements are commonly made during research cruises or at stationary field stations (Antoine et al. 2008a; Zibordi et al. 2009a; Zibordi et al. 2009b). The ocean color component of the AErosol RObotic NETwork (AERONET-OC) is a good example of an internationally coordinated automated network of radiometric observations in coastal areas (Zibordi et al. 2009b). The sources of uncertainties in such field validation efforts are attributed to a) the instrument calibration (Antoine et al.
2008a; Clark et al. 1997; Mueller et al. 2004), b) the post-processing techniques (Zibordi et al. 2004), c) differences in the spectral sampling of the in-situ instruments and that of the OC sensor (Wang 1999), and d) the spatial representativeness of the in-situ observation (Mélin and Franz 2014).

The uncertainty in intercomparisons of OC-derived \( R_n \) products, however, corresponds to a) the sensors’ radiometric performance on-orbit and the strategies employed for vicarious calibration (Bailey et al. 2008; Franz et al. 2007; Zibordi et al. 2015) b) the atmospheric correction (Gordon 1997; Müller et al. 2015), c) differences in spectral/spatial sampling, and d) the observation characteristics, i.e., angular dependencies, including bidirectional reflectance distribution function (BRDF) effects (Meister et al. 2012; Morel et al. 2002; Morel and Gentili 1996). This is further complicated if a higher-level product intercomparison (e.g., chlorophyll-a, inherent optical properties) is desired (Lee et al. 2010; Wang et al. 2005). The OC products obtained from different sensors are often compared either over open oceans (Franz et al. 2005; Hu et al. 2013) or coastal waters (Barnes and Hu 2015; Hu and Le 2014; Ladner et al. 2014; Mélin et al. 2011) to examine consistency amongst satellite observations and detect any abnormal trending. In addition, various techniques have been proposed to merge (fuse) different OC products (Maritorena et al. 2010; Maritorena and Siegel 2005; Mélin et al. 2011; Mélin et al. 2009) to build comprehensive datasets less prone to spatial and temporal gaps.

Among the sources of uncertainties for in-situ OC product validations (or calibration) and cross-sensor intercomparisons, less attention has been paid to the characterization of the impact of inherent in-water spatial variability and its relevance to sensors’ spatial
sampling. Instead, efforts have been made to avoid or minimize the impact of spatial sampling through various statistical analyses (Bailey and Werdell 2006; Mélin et al. 2007; Moore et al. 2015). One possible reason for the lack of prior research on the uncertainties induced by differences in spatial sampling is the inability to decompose the bulk uncertainty/bias into its components noted above. Bailey and Werdell (2006) suggested performing a statistical test within 5×5-pixel boxes centered on the in-situ matchups, where the coefficient of variation (CV; the ratio of standard deviation and mean) of valid pixels is evaluated. Some other researchers have reported use of 3×3-pixel boxes to analyze spatial variability at coastal sites (Zibordi et al. 2009a). Zibordi et al. (2006) asserted that the error in the representativeness of in-situ measurements could generally be treated as a random error, which can be minimized by increasing the sample numbers and averaging over time. The statistical variability observed in this manner is a combination of spatial variability and temporal variability, where the latter may be associated with the instrument calibration or algorithm errors. A common uncertainty goal for ocean color missions is to retrieve remote sensing reflectance with accuracies better than 5% in the blue channels over the open ocean (Hooker et al. 1992). Nevertheless, the reported biases for different coastal systems range from ±2% to ±35% in \( R_{rs} \) products (Moore et al. 2015; Zibordi et al. 2009a; Zibordi et al. 2012). Moore et al. (2015) reported bias values (for SeaWiFS and Aqua MODIS) larger than those published in Zibordi et al. (2012) over optically complex waters. The appreciable discrepancies in the results were due to the differences in the quality-control of the in-situ matchups. Zibordi et al. (2012) showed that the differences in \( R_{rs} \) products (satellite-derived versus in-situ) increase with the increase in the solar zenith angles and aerosol optical thickness.
Furthermore, the Group on Earth Observations (GEO), the Committee on Earth Observation Systems (CEOS) and its working groups, together with the International Ocean Colour Coordinating Group (IOCCG) are leading efforts in providing traceable measurements with associated uncertainties to the user community. For a full treatment of the error budget, it is desired that the uncertainties be specified at the component level, i.e., instrument, atmospheric correction, spectral/spatial sampling error, inversion algorithm errors, etc. For instance, for in-situ validations, both in-situ instruments (Antoine et al. 2008a; Hooker and Maritorena 2000) and the OC sensor should have traceable, and meaningful total uncertainty budget (Chander et al. 2013).

The present research provides a full and unique analysis of the impact of sensors’ spatial sampling (and their footprint sizes) on uncertainties corresponding to a) product intercomparisons at regional scales and b) in-situ validation practices at coastal ocean sites (local scales). In order to isolate the uncertainties to a sensor’s spatial sampling, we follow a simulation approach. Our focus is to model Terra MODIS (MODIST), Aqua MODIS (MODISA), and VIIRS OC products at regional and local scales using the 30m OC products derived from the Operational Land Imager (OLI) onboard Landsat-8 (Irons et al. 2012). To assess the impact of spatial sampling on satellite product intercomparisons, the simulations are performed on a daily basis for 30 (globally distributed) OLI scenes for a 16-day orbital repeat cycle of Aqua, Terra, and SNPP. Then, simulated MODISA products are independently compared against a) simulated VIIRS and b) simulated MODIST products. To simulate the impact on in-situ calibration/validation efforts, the OC products (MODISA, MODIST, and VIIRS) are simulated with more than 100 OLI scenes over eight different known in-situ stations.
(covering various environmental conditions) for a similar orbit cycle as above. The OLI observations surrounding the stations represent the “truth” and are employed to examine the matchup quality against the simulated coarse resolution OC products. With this approach, the OLI-derived OC products and their spectral contents form the basis of the simulations.

The following section (Section 2) elaborates on the necessary steps pursued to simulate OC products from relatively fine-resolution OLI products. Section 3 contains results associated with uncertainties in product intercomparisons and in-situ validations, which is followed by the discussions in Section 4. In the conclusion section, we make recommendations for improving uncertainty assessment of OC products and provide guidelines for future developments.

2. METHODS

The VIIRS instrument aboard SNPP was launched in 2011 to pursue the heritage global measurements made by MODIS on Aqua and Terra. Although VIIRS shares similar operational and climate science requirements with MODIS, it has notable differences in design, calibration, and onboard processing (Baker 2011; Cao et al. 2013). MODIS is a rotating mirror, which sweeps one scan across track while projecting it onto 10 square detectors (1km ocean bands). In contrast, VIIRS is a rotating telescope with a half-angle mirror, which projects one sweep of scan onto 16 rectangular detectors, i.e., 750m Moderate (M)-bands. The Aqua and SNPP missions are both in ascending orbits crossing the equator around 13:30 local time, while Terra (similar to Landsat-8) is in a morning orbit with nominal 10:30 equatorial crossing time.
The projected area of a detector (square or a rectangle) on the ground represents an ideal spatial sample. However, the extent within which an instrument views (and samples) a spot on the ground is commonly larger than the projected detector area due to imperfect optics, jitter, electronics, and post-processing (Holst 2008; Schott 2007). The spatial sampling function is recognized as the point spread function (PSF). The overall PSF of an imaging system is the convolution of the above-noted, component-specific PSFs. The overall spatial performance is specified by the PSF\((x, y)\), which is the product of the measured line spread functions along-track \((y)\) and along-scan \((x)\). For a pair of MODISA-VIIRS or MODIST-MODISA daily observations/products, each instrument views a target of interest from a different vantage point, which yields varying projected sampling area, i.e., the ground sample distance (GSD). The GSD is commonly defined at the Full-Width-Half-Maximum (FWHM) of the PSF (Schott 2007). The size and the shape of a footprint (one spatial sample) of an optical imager is a function of the orbit, the viewing geometry (line-of-sight), and the instrument effective spatial performance. The spatial performance is commonly characterized prior to launch (Lin et al. 2013) and is monitored commonly in the frequency domain throughout the mission either through onboard measurements (Xiong et al. 2006) or through observations of reference targets (moon, uniform edges, etc.) (Xiong et al. 2004).

When comparing two OC products at the swath level, the differences due to spatial sampling largely depend on the spatial heterogeneity of the site, i.e., pixel/scene content. Similarly, the fidelity of an in-situ matchup is highly affected by the spatial uniformity around the site. In the following, we describe the simulation procedure implemented for different OLI scenes representing distinct coastal water conditions to obtain reliable
statistics on the extent of the impact of spatial sampling on coastal OC products. A thorough description of the procedure is first given for the regional product intercomparisons followed by a short explanation of the simulations implemented at in-situ sites.

2.1. Regional Simulations

2.1.1. Retrieval of Rrs Products from OLI

The OLI onboard Landsat 8 has been shown to considerably outperform previous generation of Landsat sensors when studying aquatic systems (Gerace et al. 2013; Pahlevan and Schott 2013). This is because of its improved SNR, the 12-bit radiometric resolution, and the addition of the new 443-nm channel (Pahlevan et al. 2014; Vanhellemont and Ruddick 2014). The OLI Level-1 data products (TOA reflectance) were obtained from the USGS web portal (http://glovis.usgs.gov/). In order to provide 30m OC products, the OLI data were processed using the SeaDAS package (Franz et al. 2015). The calibration gains obtained via cross-calibration at the top-of-atmosphere (TOA) reflectance domain were applied to the original OLI observations (Pahlevan et al. 2014). However, it should be emphasized that the absolute product accuracy of the OLI products are not critical in our study. What is important is to obtain relative in-water spatial features present in various environmental conditions. Owing to the non-zero reflectance in the near-infrared (NIR) portion of the spectrum, we used two different atmospheric corrections (ACO) and chose the OLI products with more valid and smoother products based on analyzing the standard deviations for all valid pixels. The ACO was implemented using a) the combination of the two short-wave infrared (SWIR) bands (Vanhellemont and Ruddick 2015) and b) the combination of NIR-SWIR (865nm-2201nm) with the iterations on the NIR channel to account for non-zero reflectance
(Bailey et al. 2010). In these techniques, the aerosol model selection is carried out using Rayleigh-corrected SWIR or NIR-SWIR reflectances. Prior to the aerosol-model selection, the input Rayleigh-corrected reflectances (within the NIR and SWIR channels) were smoothed using a 5×5 averaging filter to increase effective SNR (Gerace et al. 2013). For the product intercomparison, 25 OLI cloud-free scenes (globally distributed as shown in Fig. 1) were processed. The preliminary products over high-latitude areas and turbid atmospheric conditions showed noisy R<sub>r</sub>s retrievals. This is attributed to the noisy nature of the Rayleigh-corrected reflectances (even after filtering) leading to error in aerosol model selection (Franz et al. 2015). Therefore, the OLI-derived R<sub>r</sub>s products were further passed through a 3×3 median filter to remove residual noise. This, however, reduces the inherent resolution of OLI data. At this point, the OLI-derived R<sub>r</sub>s products are supplied to the simulation process as described below. The retrieval of secondary products, including chlorophyll-a ([Chla], (O’Reilly et al. 1998)), diffuse attenuation of downwelling irradiance at 490nm (K<sub>d</sub>(490), (Mueller 2000)), and particulate backscattering at 655nm (b<sub>bp</sub>(655), (Lee et al. 2012)) will be derived (Section 2.1.3) from the simulated coarse-resolution R<sub>r</sub>s products (Lee et al. 2012).

2.1.2. Implementation

To simulate MODIS (MODIST and MODISA) and VIIRS R<sub>r</sub>s products using OLI-derived R<sub>r</sub>s products, the spatial sampling function (PSF) and the (per-observation) line-of-sight information of the sensors are needed.

2.1.2.1. PSF Modeling
As described, the PSF is essentially a 2D distribution function that weighs the incoming surface-reflected (or emitted) radiance. For the purpose of this study, the Line Spread Functions (LSFs) measured during the pre-launch characterization of MODIS and VIIRS were employed (Barnes et al. 1998; Lin et al. 2013). Note that, due to inherent SeaWiFS Global Biosphere [Chla/NDVI] map: Courtesy of http://oceancolor.gsfc.nasa.gov

Fig. 1. The sites (indicated by boxes) where OLI scenes are processed to Level-2 OC products for intercomparisons of products at regional scales (Section 2.1). For these locations, the MODISA, MODIST, and VIIRS OC products were simulated according to their corresponding viewing geometries from DOY=1 to DOY=16 in 2015. The red dots denote the locations where simulated matchups were produced and analyzed (Section 2.2).

Fig. 2. The band-detector average point spread functions (PSFs) shown for a) MODIS, b) VIIRS near-nadir zone (PSF-V3g), c) VIIRS mid-range zone (PSF-V2g), and d) VIIRS edge-of-scan zone (PSF-V1g). Note that it is assumed that the along-track response is rectangular (ideal response). All the functions have unit-area. The coordinates are in arbitrary pixel units.
similarities in shape, only one set of LSF was utilized for MODISA and MODIST. The LSFs had been characterized for each detector in each band. In general, the MODIS along-scan LSFs, i.e., LSF(\(x\)), can be approximated as triangular functions (Wolfe et al. 1998).

For VIIRS, however, the onboard aggregation yields different along-scan LSFs for each aggregation zone (Cao et al. 2014). VIIRS has been designed with rectangular detectors (with the smaller dimension along-scan) to allow for aggregating (averaging) multiple samples. At near nadir scan angles (\(\alpha < 31.72^\circ\)) every three pixels are aggregated, in mid-range angles (31.72\(^\circ\) < \(\alpha < 44.86^\circ\)) every two pixels are aggregated, and at the edge of the scan (\(\alpha > 44.86^\circ\)) no averaging is implemented. This scheme provides near-uniform sampling of the Earth surface in the along-scan (\(x\)) direction and reduces the “pixel growth” at the edge of the scan to less than 2.2\(\times\) the linear dimension of the nadir pixels (Fig. 8 in Cao et al. (2014)). The MODIS along-scan samples at the edge of the scan, however, are nearly five times larger than those at nadir. On the other hand, at the edge of the scan, the size of the MODIS and VIIRS along-track footprints are very similar, i.e., \(\sim\) twice larger than the footprint sizes at nadir-viewing angles (Wolfe et al. 2013). For an accurate simulation of the effects of spatial sampling on OC products, the four different LSF(\(x\)) (Fig. 2) are modeled to represent the spatial sampling of MODIS and VIIRS. The along-scan LSFs, as a result, are modeled as the summation of multiple Gaussian functions, which provided the best fit to the measured LSFs:

\[
LSF(x) = \sum_{i=1}^{5} a_i \exp\left(\frac{x-b_i}{c_i}\right)
\]

(1)
where $b$ and $c$ are the mean and the standard deviation for each Gaussian function, respectively, and $i = 1, \ldots, 5$ represents indices attributed to the Gaussian functions. The PSF$(x,y)$ is a separable function and can be constructed by assuming a rectangular LSF along-track ($y$) as below (Lin et al. 2013):

$$\text{PSF}(x,y) = \text{LSF}(x) \times \text{LSF}(y)$$  \hspace{1cm} (2)$$

where LSF$(x)$ and LSF$(y)$ are the along-scan and along-track spatial responses of MODIS and VIIRS, respectively. Fig. 2 shows the unit-area PSFs employed to simulate MODIS and VIIRS scenes. Note that the discrepancies amongst band- or detector-dependent LSFs are assumed negligible and average sampling functions of 1000$m$ ocean bands (MODIS) and 750$m$ M-bands (VIIRS) are used. Also, in this study, the optical scattering (leakage) outside of the instantaneous field-of-view of a detector has been ignored (Meister and McClain 2010). The PSFs constructed using Eq.2 are further scaled and rotated per observation (pixel) according to the line-of-sight geometries.

### 2.1.2.2. Line-of-sight Geometry

In addition to the PSF modeling, the corresponding line-of-sight information is extracted from the geolocation products. The MODIS geolocation products (MYD03 and MOD03 corresponding to MODISA and MODIST, respectively) were obtained from the NASA’s Level-1 and Atmosphere Archive and Distribution System (LAADS) while those of VIIRS (GMODO) were downloaded from the NOAA’s Comprehensive Large Array-data Stewardship System (CLASS). The geolocation products allow for reconstructing per-pixel (-observation) line-of-sight geometries. The line-of-sight
information includes per-pixel geographic latitude and longitude, the view zenith angle (VZA), the view azimuth angle (VAA) relative to the North, and the satellite range (R), which is defined as the distance between the sensor and ground (Baker 2011). While the standard MODIS geolocation products are available at 1km grid resolution, the inherent VIIRS geolocation grids are at 750m.

The 30m OLI $R_n$ products are sampled with MODIS and VIIRS PSFs and their respective line-of-sight geometries on a daily basis (for 16 days). The supports of the PSFs (Fig. 2) are essentially scaled and rotated in along-track and along-scan directions given per-pixel VZA, VAA, and R (Schowengerdt 1997). The PSFs are convolved with OLI $R_{rs}$ products in a discrete form as follows:

$$S_n^k = \sum_m \sum_i \sum_j PSF_{(VZA_m,VAA_m)}(i,j) \ast R_{rs}^k(i,j)$$  \hspace{1cm} (3)

where $S_n^k$ is the simulated VIIRS or MODIS sub-granule swath for the $n$th day ($1 < n < 16$), $k$ is the channel number, $R_{rs}^k(i,j)$ indicates the remote sensing reflectance attributed to a pixel location $(i,j)$ on the OLI grid for band $k$, and $PSF_{(VZA_m,VAA_m)}$ is the PSF implemented for a given $VZA_m$ and $VAA_m$, where $m$ is an observation (pixel) index associated with MODIS or VIIRS geolocation products (Wolfe et al. 2002). The four OLI visible channels (i.e., $k = 1, 2, 3, 4$ which represent 443, 482, 562, and 655nm) are processed during the simulation (Pahlevan and Schott 2013).

The MODIS footprint size was computed using range, VZA, and MODIS effective focal length (380mm) for the along-scan and along-track directions (Schowengerdt 1997).

On the other hand, due to the onboard aggregation scheme of VIIRS, there is no such a
direct relationship between VZA and footprint size. Therefore, the footprint size of VIIRS in along-scan and along-track was calculated by quadratic modeling of the scan-angle-versus-foot-print size relationship (Cao et al. 2014). This was done by specifying observational aggregation zone (for VIIRS) and recalculating the scan angle from a given VZA as below

\[ \alpha = \sin^{-1}(\sin(180 - VZA) R_e / (R_e + H)) \]  

(4)

where \( R_e \) is the Earth radius for a given latitude and \( H \) stands for the VIIRS orbit altitude at nadir. To provide concrete examples, the along-scan size of a MODIS and VIIRS observation cell at nadir is approximately 2200m and 1160m, respectively, which are nearly 2.2 and 1.5 times larger than the projected size of the detectors on the ground (e.g., \( \sim 750m \) for VIIRS). With this approach, simulated VIIRS or MODIS granules (5-min MODIS granules in case of MODIS) are created. Since only the OLI effective area is filled with valid \( R_s \) values in the granules, we refer to the resulting swath as sub-granules.

Fig. 3 shows an example of an OLI scene and the simulated MODISA, MODIST, and VIIRS. In this example, an OLI-derived chlorophyll-a product is “scanned” given MODISA, MODIST, and VIIRS viewing geometries. Note the differences in the average VZAs for the three simulated ocean color scenes.

2.1.2.3. Time Period

While the OLI \( R_s \) products come from various coastal systems during different times/seasons (see Appendix), simulations of MODIS and VIIRS granules are performed
Fig. 3. Examples of simulated MODISA, VIIRS, and MODIST swaths for [Chla] (mg/m³) fields derived from the OLI-derived [Chla] products over the Yangtze River mouth, East coast of China. The average view zenith angles (VZAs) are 58.18°, 51.5°, and 21.5° for MODISA, VIIRS, and MODIST swaths, respectively. The features are reproduced at different viewing conditions. Note that OLI and MODIST are in descending orbits. Also, the extremely turbid waters over the basin are masked.
for an arbitrary orbital repeat cycle of Aqua/Terra/SNPP starting from January 1st (DOY=1) to January 16th (DOY=16) in 2015. This is to maintain the orbit geometries similar for all the simulations, which allows for consistent product intercomparisons across all simulated products. Note that only viewing geometries of ocean color sensors are extracted over this period of time and the OLI scenes correspond to different days of year and environmental conditions. It should be noted that daily intercomparisons are carried out only for days that both granules fully cover an OLI scene across track. This is to ensure that there is a one-to-one comparison between simulated MODIS and VIIRS Rs products. Note that for higher latitude OLI scenes (e.g., Alaska scenes), there are more than 16 pairs of MODISA-VIIRS (or MODIST-MODISA) intercomparisons.

2.1.3. Retrieval of Secondary OC Products

After MODISA, MODIST, and VIIRS Rs swath-level products are simulated, [Chla], $K_d(490)$, and $b_{bp}(655)$ are computed using standard algorithms available in SeaDAS (http://seadas.gsfc.nasa.gov). For [Chla], we used the OC3 algorithm (O’Reilly et al. 1998; O’Reilly et al. 2000), which was recently adapted for the spectral bands of OLI (Franz et al. 2015). Similarly, for $K_d(490)$ we used the KD2 algorithm (Mueller 2000) with the OLI-specific tuning provided in SeaDAS. And finally, for $b_{bp}(655)$ we used the QAA inherent optical properties algorithm of Lee et al. (2002). It should be further emphasized that the absolute accuracy of retrievals are not critical in our study. What is important is capturing varying coastal-ocean spatial features (swirls, river plumes, eddies, etc.) of different sizes through OLI observations and the derived products.

2.1.4. Gridding
The swath-level $R_{\text{rs}}$ products are commonly distorted geographically (Fig. 3) rendering it impossible to make pixel-to-pixel comparison. For a particular day of Terra and Aqua’s overpasses (e.g., DOY=4), consider arbitrary MODISA and MODIST observations, which view an OLI scene at two significantly different viewing angles. The per-observation inter-comparisons of the two swaths are hindered by significantly different levels of distortions for the pair of observation (e.g., ~6km MODISA pixels against ~1km MODIST pixels). For this reason, the simulated sub-granules ($S^K_n$) are gridded to 1km sinusoidal grid cells ($S^K_{nG}$) (Wolfe et al. 1998) using the nearest-neighbor technique (Campbell et al. 1996). The 1km grid was chosen to closely match the near-nadir nominal resolution of MODIS and VIIRS over spatially variable coastal waters. The gridding allows for a uniform cell-by-cell comparison.

2.2. Local Simulations

With the simulation routine in place, it is also possible to provide insights into how well a discrete in-situ sample taken during a field campaign or at a field station represents an observation made by MODISA, MODIST, or VIIRS (Melin et al. 2007; Moore et al. 2015). To do so, OLI pixels were used to represent a sample measurement in the field or at a site. These locations can well be arbitrary, however, it was decided to carry out this analysis at known field sites where routine radiometric observations are made for OC calibration/validation purposes. We chose AERONET-OC stations (Zibordi et al. 2009b) located near Venice (Venise), Martha’s Vineyard (MVCO), Gustav Dalén (Gustav), Helsinki Light House (Helsinki), Zeebrugge, and Palgrunden (Fig. 1) to represent spatially variable waters at the proximity of coastal waters (http://aeronet.gsfc.nasa.gov). We further used the locations at the Marine Optical Buoy (MOBY) (Clark et al. 1997) and the BOUSSOLE site (Antoine et al. 2008b) to assess spatial variability in clear
waters. The latter two sites are buoys where in-situ radiometric observations are made to calibrate TOA OC observations. It is stressed that we do not incorporate the actual radiometric measurements at these sites. All the available cloud-/glint-free OLI scenes over the selected sites (totaling 120) were obtained from the USGS database. Similar to the previous section, the field sites were observed (scanned) for one orbit cycle (DOY=1 through DOY=16) of Aqua, Terra, and SNPP. Therefore, the 16-day simulated products (locally) are computed for each OLI sample scene (Section 2.1.2.3).

For processing the OLI TOA products, although best-practice atmospheric correction was employed (similar to Section 2.1.1; a combination of NIR-SWIR), there remains a small percentage of OLI pixels flagged for poor quality (due to ship wakes, significant resuspension events, etc.). Like the previous section, the OLI-derived OC products were processed with a 3×3 median filter prior to implementing the simulations (Section 2.1.2). The simulation was performed for one pixel, i.e., 1×1 window, as well as a 3×3 window, and a 5×5 window of MODISA, MODIST, and VIIRS pixels surrounding the site location to scrutinize in-water spatial variability at observation scales. Following multiple experiments, it was decided to discard simulation results (OC pixels) for which more than 5% of the OLI pixels (falling under one ocean color footprint) are flagged. The major reasons for pixel-flagging in case of our cloud-free OLI scenes were failure of the atmospheric correction and the presence of land boundaries or marine vessels). When this criterion is passed, the remaining flagged pixels (< 5% of total) are ignored and not included in further statistical analysis. Moreover, the simulation ocean color footprints were discarded if CV calculated for a window exceeded a threshold of 0.15 (Bailey and Werdell 2006). To further minimize impacts of OLI residual scene noise (i.e., striping),
the same criterion was tested for the OLI pixels falling under the window under investigation. To simulate the in-situ radiometric observation at the site, a window of size 5×5 (centered at the site location) was used to extract OLI-derived pixels totaling 16. This is to exclude the center 3×3 elements to avoid adjacency effects (Storey et al. 2014). The median value computed from the 16 pixels was found to best represent the measurement at the site. To emulate calibration/validation activities at these sites, the gridding scheme (Section 2.1.4) was excluded in this section. Therefore, comparisons were made at swath-level observations.

2.3. Metrics

To gauge how two sets of products (derived from sensors A and B) compare, multiple metrics are defined. The per-cell (i) percent difference is defined as:

\[ RPD^i = \frac{R_A^i - R_B^i}{\left((R_A^i + R_B^i)/2\right)} \times 100 \]  \hspace{1cm} (5)

where \( R_A^i \) and \( R_B^i \) stand for per-grid cell (i) simulated products for products derived from sensors A and B. In a slightly different manner, the absolute relative percent difference can be calculated

\[ ARPD^i = \frac{|R_A^i - R_B^i|}{\left((R_A^i + R_B^i)/2\right)} \times 100 \]  \hspace{1cm} (6)

The median and mean values of RPD and ARPD over an entire grid can be used to specify the overall discrepancies for a product pair (Table 1). To further get insights into the differences in an absolute sense (product units), we also provide the root-mean-squared difference for N grid cells computed as below

\[ RMSE = \sqrt{\frac{\sum_{i=1}^{N}(R_A^i - R_B^i)^2}{N}} \]  \hspace{1cm} (7)
Also, histograms of the RPD sub-granules (Eq. 5) provide valuable statistics on a per-grid cell basis. Based on a histogram, multiple discrepancy metrics can be defined. In particular, we use the 1st momentum of the histogram to refer to the mean bias. We also define the Percent of Pixels (PoP) within the \( \pm z\% \) range of the histogram mean. The PoP \( (%) \) is a metric that specifies the percentage of pixels that fall within the \( \pm z\% \) of the mean of the histogram. For instance, when \( z = 1\% \), the percentage of grid cells exhibiting differences less than 1\%, i.e., \( -1\% < RPD^i < +1\% \), is expressed. This is represented by PoP @ \( z = \pm 1\% \). Fig. 4 illustrates a sample RPD histogram computed from simulated VIIRS and MODISA sub-granule \( R_s \) products with \( z \) ranging within \( \pm 10\% \). For a given pair of simulated gridded products, the narrower the histogram the more homogenous the site is. To eliminate outliers from our analysis, we restrict RPD within the \( \pm 60\% \) range. These outliers commonly occur at land-water interfaces, where

![Histogram Example](image)

Fig. 4. A typical histogram derived from product intercomparisons. Amongst different histogram-derived parameters, the Percent of Pixels (PoP) is shown above for various levels of relative percentage difference, i.e., \( RPD = 1\%, 5\%, \) and \( 10\% \). Also, histogram kurtosis indicates how spread is the distribution around the histogram mean. The narrower the histogram, the more consistent a pair of products are.
discrepancies in the footprint sizes result in seemingly large differences. The other histogram-derived metric is kurtosis (K). Kurtosis is the fourth moment of the distributions, which is a descriptor of the shape of the distribution and explains how narrow a distribution is relative to that of a normal. For a normal distribution, the kurtosis value is \( \sim 3 \). The narrower the shape of a histogram, the larger the kurtosis value is. For example, when \( K = 10 \), a product pair is found more consistent than if \( K \) were equal to 3. The overall analysis of these metrics helps understand how the combination of imaging geometry and spatial sampling contribute to the differences in ocean color products at regional scales.

For the OC simulations over field stations, we used a slightly different metric termed the percent difference (PD) for the station \( s \) as below

\[
PD^s = \frac{R_X^s - R_{OLI}^s}{R_{OLI}^s} \times 100
\]

(8)

where \( R_X^s \) represents the median (within a 3×3 or 5×5 box) simulated observations (for the sensor \( X \)) and \( R_{OLI}^s \) is the median OLI OC products within a 5×5 box centered over the field station \( s \). Note that we excluded the 3×3 pixels at the center, which effectively allowed 16 pixels for calculating the median value. The PD can be utilized to obtain an estimate of the temporal mean bias at a field station (e.g., MOBY). The absolute percentage difference can also be used to provide further insights into matchup analysis:

\[
APD^s = \frac{R_X^s - R_{OLI}^s}{R_{OLI}^s} \times 100
\]

(9)

The metric APD is used to explain how close a simulated in-situ \( R_{rs} \) is to that derived from satellite observations. Note that for simulating matchups, we only evaluate differences in \( R_{rs} \).

3. RESULTS
The uncertainties induced by spatial sampling are presented for two data quality assessment approaches: a) intercomparisons of products derived from two different OC sensors and b) products compared against “in-situ measurements” at eight different sites. While the former provides insights into the discrepancies in products at regional scales (Landsat scene size; 185km × 185km), the latter is an assessment of spatial representativeness at the selected field sites.

3.1. Regional Assessment

3.1.1. Product Consistency

In this section, the kurtosis value is used to describe the overall discrepancies between product pairs. Fig. 5 illustrates the kurtosis values (K) as a function of differences in the mean view zenith angles (\(\overline{VZA}\)) for the three selected sites. The mean view zenith angle is computed by taking the average of VZAs with which the OC sensor “views” (scans) an OLI scene. The differences in \(\overline{VZA}\), i.e., \(\Delta VZA = \overline{VZA}_V - \overline{VZA}_{MA}\) and \(\Delta VZA = \overline{VZA}_{MT} - \overline{VZA}_{MA}\), are binned into 10° intervals. The subscripts MA, MT, and V correspond to MODISA, MODIST, and VIIRS, respectively. For each OLI scene, at least 12 pairs of simulations for MODISA-VIIRS and MODIST-MODISA are incorporated. The error bars denote one-standard deviation for the data points (associated with mean K) situated within a \(\Delta VZA\) bin. The differences in angles (\(\Delta VZA\)) range from −60° to +60° on the x-axes. Figs. 5a-c correspond to VIIRS-MODISA intercomparisons of \(R_m\), [Chla], \(K_d(482)\), and \(b_{bp}(655)\) products. It is clearly seen that the interconsistency between all products improves towards positive \(\Delta VZA\)s, i.e., narrower histograms on the right side of the plots. On average, the products are more consistent by a factor of two when the edge-of-the-scan VIIRS products are compared against near-nadir products of MODISA.
This is attributed to larger along-scan footprint sizes of VIIRS at the edge of the scan (~ 2.7km) against the 2.2km along-scan MODISA footprint sizes at nadir-viewing geometries. On the other hand, the discrepancies between MODIST and MODISA geometries.

Fig. 5. The kurtosis values (derived from the RPD histograms) are shown as a function of differences in mean VZAs ($VZA$). The subscript $X$ denotes VIIRS (V) or MODIST (MT). The top row shows the asymmetric trends when MODISA and VIIRS products are compared. The x-axes denote $\Delta VZA = VZA_V - VZA_{MA}$. This trend implies that the products are more consistent when $VZA_V > VZA_{MA}$ which yield similar footprint sizes for the two observations. The bottom row corresponds to the intercomparisons of MODISA and MODIST products as a function of $\Delta VZA = VZA_{MT} - VZA_{MA}$. Although MODISA and MODIST are in afternoon and morning orbits, there is no particular trends found when comparing the associated products at different VZAs.
products exhibit symmetric trends around $\Delta VZA = 0$ (Fig. 5d-f). It is, thus, inferred that although Aqua and Terra are in different morning and afternoon orbits, due to their similarities in spatial sampling and footprint size, there are no distinct trends observed on either side of the plots. The K values also provide clues on the in-scene spatial variability at each site. For instance, the K values for the Persian Gulf site are, on average, smaller than those for the Alaska and the Monterey Bay sites (indicating its larger inherent in-water variability). While K values (and also PoP not shown here) show evidence for the angular dependency of product interconsistency at regional scales, the mean RPD (same plots as in Fig. 5 but for mean RPD not shown here for brevity) does not evidently exhibit angular dependency. This implies that the use of representative statistics (e.g., mean RPD and ARPD) computed at regional scales can minimize the overall product inconsistencies (as opposed to pixel-by-pixel comparisons captured by K and PoP). Table 1 contains the overall statistics calculated for all sites. As expected, for all the products compared in this study, the mean RPD values converge to zero validating that overall intercomparisons at regional scales ($185 km \times 185 km$ in this study) are immune from the effects of differences in spatial sampling. Note that the RPD ranges within the $\pm 60\%$ with histograms resembling the normal distribution, that is, the differences can reach up to 60%. The comparisons in the ARPD domain (absolute relative percent differences computed for all scenes) show percent differences falling within the 1% to 4.5% range. This varies depending on whether the mean or median metrics are considered. We refer to the mean ARPD values (averaged for the two sets of intercomparisons), as the
intercomparison uncertainty induced by differences in the spatial sampling that one should anticipate for similar practices in coastal waters. The values computed as 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the $R_\text{rs}(443)$, $R_\text{rs}(482)$, $R_\text{rs}(561)$, $R_\text{rs}(655)$, [Chla], $K_d(482)$, and $b_{bp}(655)$ products, respectively (Table 1). The RMSD values indicate that, overall, the differences in $R_\text{rs}$ and [Chla] products are $< 0.0005 \, sr^{-1}$ and $< 0.15 \, mg/m^3$, respectively.

**3.1.2. Uncertainty Thresholds**

As noted, the histograms of the RPD grids can be used to interpret the inconsistencies between a product pair. Fig. 6 shows how the percentage of pixels (PoP) lying within a threshold ($\pm z\%$) can change. The results are shown for six sample sites. These curves are the mean values derived from all the daily intercomparisons within one MODISA-VIIRS orbit cycle (MODIST-MODISA comparisons are not shown here). Each marker indicates the percentage of pixels falling within a relative percent difference (RPD) shown on the x-axes as $z$. Note that the x-axes are shown from 1 to 10% (recall from Section 3.2 that
the RPDs can reach as high as 60%). The y-axis indicates the PoP (%). Taking the graph associated with the Alaska site as an example, when a 1% RPD in products ($R_m$, $[\text{Chl}_a]$, $K_d(490)$, $b_{bp}(655)$) is adopted as an accepted threshold (i.e., pixels are assumed consistent), there is, on average, only 40-60% of the pixels that meet this threshold. As one accepts higher uncertainty thresholds more pixels fall within the threshold. As it appears from Figs. 6a & 6d, the product discrepancy is dependent on inherent spatial variability of the coastal ecosystems under study. For the sites with less spatial variability (inferred via visual analyses), over 90% of the products are in good agreement, when uncertainty threshold is set at 2%. Since the shape of the histograms resemble normal distributions, it is also possible to express the uncertainties in intercomparisons as probability. These sites include East China and Saint Lawrence. Consider MODISA-VIIRS discrepancy in $[\text{Chl}_a]$ for the East China site (Fig. 6a), it can be inferred that there is a 68% chance for any given pixel to exhibit differences below ±1%. For the Saint Lawrence site, the inconsistency curves quickly reach 100% for all the products at the ~5% threshold. These results (including those not shown here) indicate that there is, on average, 80% chance that product intercomparisons show inherent differences below 8% (due to the combination of in-scene spatial variability and sensors’ viewing geometries), a threshold at which the product can be considered consistent. In other words, there is a 20% chance that products show more than ~8% discrepancies. Depending on the application, one may choose different thresholds for such intercomparison analyses. Visual inspections of RPD grids verify that high discrepancies occur at the proximity of land-water interfaces, where the two instruments view such high-contrast regions from
Fig. 6. The spatial interconsistency curves showing the percentage of pixels (PoP) found consistent at different $|\text{RPD}|$ thresholds (x-axes). As the absolute RPD increases more pixels (% PoP) are expected to fall within the threshold. On average, more than 80% of the pixels are considered consistent when $z=8\%$ difference in products are adopted as the threshold.
different vantage points. Note that in actual imaging conditions, adjacency effects may further complicate the discrepancies (Meister and McClain 2010). Although the original OLI products have undergone smoothing and de-noising, there are some signal-dependent trends in the spatial consistency curves (as seen in Fig. 6). The red channel and the b_{bp}(655) products (derived from MODISA and VIIRS) commonly show the largest discrepancies, whereas (for sites with [Chla] < 0.3 mg/m³) R_s (443) product is found to be the most consistent product. This is consistent with the previously published works (Mélin et al. 2007; Moore et al. 2015) and is attributed to the low signal levels measured/retrieved. For all the sites and geometries, K_d (490) is, on average, amongst the relatively consistent products while the [Chla] products exhibit less consistency (slightly better than those of R_s (655) and b_{bp} (655)).

The graphs shown in Fig. 6 indicate the interconsistency between products derived from MODISA and VIIRS. It is also important to obtain insights into how VIIRS-MODISA cross-comparisons differ from those for MODIST-MODISA. This would reveal how differences in the orbits and viewing geometries can, overall, contribute to intercomparison in coastal ocean waters. Fig. 7 shows the median ratio of PoPs associated with the MODISA-VIIRS and MODIST-MODISA intercomparisons as a function of varying thresholds (z). It is inferred that the MODISA- and VIIRS-derived products are more consistent (12% at maximum) than MODIST-MODISA products. For instance, there are 8-12% more pixels falling within ±1% threshold (z) when MODISA and VIIRS products are compared, i.e., VIIRS and MODISA are slightly in a better agreement than MODIST and MODISA. This indicates the importance of satellite orbits (ascending versus descending) on product interconsistency and long-term global
Fig. 7. The ratio of MODISA-VIIRS and MODIST-MODISA intercomparisons (based on PoP) as a function of the uncertainty threshold (absolute RPD). Overall, MODISA and VIIRS products are more consistent than when products of MODIST and MODISA are compared.

Fig. 8. The spatial consistency curves shown for $R_s$ (443) as a function of scale, i.e., $1km \times 1km$, $3km \times 3km$, etc. The y-axis denotes PoP at $z=1\%$, which increases as the effective grid cell size increases. The optimal scale, on average, is found at 7km.
monitoring of coastal oceans. As larger thresholds are adopted, the intercomparisons are expected to become very similar for the two sensor pairs (e.g., less than 3% difference in PoP at \( z = \pm 10\% \) threshold). Note that these intercomparisons encompass all observations (pixels) across various OLI scenes, which permits to gauge consistency on a per-grid cell basis between sensor (product) pairs.

3.1.3. Scale-dependency

The intercomparisons presented in the previous section showed product discrepancies at the 1km grid cell size (Section 2.1.4). In this section, we will discuss the spatial scales at which nearly all the pixels meet a \( z = \pm 1\% \) difference threshold (RPD). For this purpose, the 1km grid cell is filtered using varying window sizes (i.e., \( 3 \times 3, \ldots, 21 \times 21 \)). The products (smoothed at different scales) are then compared (i.e., calculating RPD) to quantify at what scale, i.e., window size, they can be regarded as consistent, i.e., the inconsistencies reach a minimum. At such scales, the product intercomparisons can be considered insensitive to the effects of spatial sampling. To exclude the artifacts due to the averaging at the land-water interfaces, the grid cells 21km from these boundaries were not incorporated in the analysis. Fig. 8 illustrates the spatial interconsistency curves for the \( \text{Rrs}(443) \) products shown for the different sites studied here. The y-axis is the PoP (%) specified for \( z = \pm 1\% \) threshold and the x-axis denotes the window size used to smooth the products. As expected the product inconsistencies are at minimum when comparing relatively uniform coastal scenes. This is noticeable for the Saint Lawrence and East China sites, for which the curves quickly peaks when products are smoothed with \( 3 \times 3 \) windows, i.e., effective grid size of \( 3km \times 3km \). However, for most sites, the spatial interconsistency curves plateau (does not necessarily reach 100%) when the
effective grid cell size is \( \sim 7\, \text{km} \). This indicates that for relatively reliable product intercomparisons in offshore regions, one may need to perform a low-pass filtering with window sizes of at least \( 7 \times 7 \) to minimize the impact of high-frequency variations in coastal ocean waters. In our case studies, the exception is the Persian Gulf site where the corresponding curve does not reach a maximum until \( 9 \times 9 \) windows are implemented. It is, therefore, surmised that the intercomparison studies at \( 9\, \text{km} \times 9\, \text{km} \) standard Level-3 products are expected to be least impacted by the effects of spatial sampling, i.e., differences in the viewing geometries, orbits, footprint sizes, etc.). Note that depending on the inherent spatial variability of the sites, there may be some residual differences in the products as seen in Fig. 8 for spatial scales larger than 9km. It is stressed that the result in this section applies to the offshore regions (> 21km off the coastlines), where RPD values, in general, remain below 10% \(|z| < 10\%\).

### 3.2. Spatial representativeness at In-situ sites

As described in Section 2.2, for the local spatial analysis, the OLI observations at the proximity of the field sites are regarded as the “sea-truth” and compared against simulated coarse OC products. Fig. 9 shows PDs for the available OLI-derived \( R_a(443) \) products at the MVCO, Venise, and Zeebrugge sites. Note that the OLI scenes available from 2013 to 2015 are shown for one annual period and grouped according to the OLI observation dates, i.e., OLI scenes. For these sites, MODISA, MODIST, and VIIRS simulated observations are averaged over \( 3 \times 3 \) boxes. Several conclusions can be drawn from the graphs. First, although the CV < 0.15 threshold was implemented to discard
Fig. 9. The simulated percent differences (PD) for $R_{rs}(443)$ (Eq. 8) shown for the three AERONET-OC stations for all available OLI scenes (N) at the sites. The PDs are calculated for 3x3 simulated OC pixels and a representative OLI OC pixel. The PD ranges from -20% to +30% for these sites and is mainly dependent on the environmental conditions (in-water features) captured by the OLI scene. The MODISA and MODIST show more day-to-day variability with respect to VIIRS.
simulated outliers, the daily simulated PDs (Eq. 8) can reach as high as ±18%. The largest PDs may be attributed to influxes of terrestrial inputs and algal bloom events. Second, MODISA and MODIST exhibit larger day-to-day variability in PD (vertical axes) than that for VIIRS during an orbit cycle for most of the coastal conditions. The per-orbit cycle variability of PD, on average, ranges from 1% to 15%. Third, spatial variability around each site primarily drives the magnitude of the difference (note the cluster of data points associated with each OLI scene). On the other hand, the variations in viewing geometry result in a random variability (clutter) around the average PD. Note that the PDs (or APDs) in the red channel are the largest (i.e., < 25%) amongst all the channels due to the relatively small signal (Eq. 9).

This random variability in the day-to-day simulations is lowest for the MOBY and BOUSSOLE sites. Fig. 10 illustrates variability for different orbits for six (A to F) OLI scenes at the MOBY site. To comply with the existing calibration protocols of ocean color products at the MOBY site (Bailey and Werdell 2006), the median of simulated ocean color observations are computed within 5×5-element windows and compared against representative OLI pixels (Section 2.3). For the scenes A, B, and C, the mean PD is nearly zero with some random variability from orbit to orbit. The random variability (around the mean trend) ranges from 0.5% to 1.5%. In general, VIIRS exhibits less variability relative to MODISA and MODIST, in particular when spatial variability around the site increases (e.g., scene E). The overall (mean) trend generally remains within the ±5% range. The differences found for the BOUSSOLE site (not shown here) range within ±4%. It is thus worthwhile noting that the variations in the footprint size
increase uncertainties (random variability) and may introduce bias in calibration/validation efforts at these spatially homogenous sites.

Fig. 10. The PD (%) shown for three OLI-derived Rₜ (443) products (i.e., A, B, C, D, E, and F) for the MOBY site. The curves correspond to MODISA (red), MODIST (green), and VIIRS (blue) products. The solid lines denote PDs corresponding to 5×5 windows. The larger variability associated with MODIST and MODISA with respect to VIIRS is noticeable.
In the OC matchup analysis, after performing a multi-stage filtering (Bailey and Werdell 2006), the uncertainties are commonly attributed to the sensor calibration (at a reference wavelength), and radiative transfer modeling (atmospheric correction), as well as atmospheric conditions. Temporal averaging, however, diminishes impacts of spatial mismatch at validation sites (Bailey et al. 2008; Franz et al. 2007). To provide insights into the overall expected biases for the coastal sites for matchup analysis, we present average statistics derived from the metrics defined in Section 2.3. After discarding all the outliers (i.e., flagged simulated OC observations), 1091, 1084, and 2043 valid “matchups” were incorporated in this statistical analysis for MODISA, MODIST, and VIIRS, respectively. Fig. 11 illustrates the average absolute differences (APDs) for the 443nm channel. It is inferred that, on average, the APD (Eq. 9) increases with the increase in the window size at these coastal sites. This is expected as larger spatial variability is introduced in the matchup analysis by incorporating more OC observations in coastal waters. Compromise has to be made as increasing the window size lowers the noise contribution. Furthermore, there is, on average, 10-15% less difference associated with simulated matchups for VIIRS when compared to those of MODISA and MODIST. Although use of a single (center) pixel gives rise to a minimum difference in our simulated matchup analysis, in practice, residual detector striping/banding adds another source of uncertainty in the analysis. Thus, depending on the instrument performance (or the efficiency of the de-striping approach) and the environmental conditions (turbidity, resuspension, river plumes, algal blooms, etc.) either center pixel (1×1) or the
median/mean of a 3×3 window is recommended for use. Currently, the use of a 3×3-element window is common practice for validating ocean color products in coastal waters (Zibordi et al. 2009a). Although an apparent random variability is expected for

Fig. 11. The overall mean absolute differences (APDs) computed for simulated MODISA (N=1091), MODIST (N=1084), and VIIRS (N=2043) for different window sizes shown for the OLI 443nm channel. The windows are centered over the AERONET-OC (costal) sites.
Table 2. The average, per-band statistics computed for all the AERONET-OC (coastal) sites.

<table>
<thead>
<tr>
<th></th>
<th>1x1</th>
<th>3x3</th>
<th>5x5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APD (%)</td>
<td>RMSD (1/sr)</td>
<td>PD (%)</td>
</tr>
<tr>
<td>MODISA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>3.4</td>
<td>0.00024</td>
<td>0.8</td>
</tr>
<tr>
<td>482</td>
<td>3.3</td>
<td>0.00029</td>
<td>0.7</td>
</tr>
<tr>
<td>561</td>
<td>3.4</td>
<td>0.00040</td>
<td>0.6</td>
</tr>
<tr>
<td>655</td>
<td>6.8</td>
<td>0.00038</td>
<td>0.6</td>
</tr>
<tr>
<td>443</td>
<td>3.3</td>
<td>0.00023</td>
<td>0.8</td>
</tr>
<tr>
<td>482</td>
<td>3.2</td>
<td>0.00027</td>
<td>0.6</td>
</tr>
<tr>
<td>561</td>
<td>3.4</td>
<td>0.00037</td>
<td>0.5</td>
</tr>
<tr>
<td>655</td>
<td>6.2</td>
<td>0.00038</td>
<td>1.0</td>
</tr>
<tr>
<td>443</td>
<td>2.8</td>
<td>0.00020</td>
<td>0.5</td>
</tr>
<tr>
<td>482</td>
<td>2.7</td>
<td>0.00024</td>
<td>0.4</td>
</tr>
<tr>
<td>561</td>
<td>2.9</td>
<td>0.00032</td>
<td>0.4</td>
</tr>
<tr>
<td>655</td>
<td>5.6</td>
<td>0.00032</td>
<td>0.9</td>
</tr>
</tbody>
</table>
observations made from different orbits (Fig. 9) over varying environmental conditions (turbidity, resuspension, river plumes, etc.), we found that there is a bias that may not be removed by temporal averaging. At the coastal sites, the mean bias is found to be ~ 0.8%, which is the average of the mean difference, i.e., PD, derived for all the spectral bands and window sizes (Table 2). For the BOUSSOLE and MOBY sites, the temporally averaged PDs are found to fall within the ±0.1% range for the 443nm channel. The average PD, APD, and RMSD metrics are tabulated in Table 2. Note that these differences are attributed to matchup analysis at field stations where temporal averaging is possible. However, at in-situ sampling stations (taken during research cruises), the difference may be as high as ±18% (Fig. 9) depending on the footprint size and environmental conditions.

In addition to the overall expected differences, we also give insights into the mean variability, i.e., standard deviation around mean difference, shown along the y-axes of Figs. 9 for all the sites as a function of window size for the coastal sites. We found the uncertainty (variability) to be 3%, 3.5% and 3.9% for the 443nm channel, and 3%, 4.5%,

![Graph](image)

**Fig. 12.** The OLI-derived $R_s(443)$ noise (1/sr) is shown as a function of solar zenith angle (SZA). The standard deviation was calculated over $5 \times 5$-element windows over uniform bodies of water from various OLI scenes (N=75). The product noise remains relatively stable for low to
and 7.8% for the 561nm channel when 1×1, 3×3, and 5×5 windows are used respectively. In contrast, the variability in PD (or APD) at the BOUSSOLE and MOBY sites (located in blue waters) was reduced by increasing the window size, i.e., the 5×5-element window provided minimum variability.

4. DISCUSSIONS

The basis of the spatial analysis presented here was the OLI-derived ocean color products. Although OLI offers dramatically improved SNR when compared with the previous Landsat sensors, the striping and banding effects limit the quality of the ocean color products at the inherent 30-m resolution. This is, in particular, noticeable at lower signal levels when solar zenith angle (SZA) is high. Fig. 12 illustrates the $R_{s}(443)$ noise as a function of SZA computed over uniform bodies of water across various independent OLI-derived products. In order to surmount this instrument-induced variability within OLI-derived products, the high-frequency components were removed by running a 3×3-element window size. To evaluate the impact of the filtering, we conducted large-area simulations (Section 3.1) for a handful of OLI scenes and found that the results (Table 1) changed only by a fraction of a percent. The results presented in Section 3.2, however, showed a more appreciable difference (< 5% in Table 2) for some of the coastal sites located at higher latitudes where the impact of striping in OLI products was severe. These scenes (characterized with low SNR) were therefore reprocessed with an average Ångström exponent (derived over a subscene) to minimize the effects of striping.

The OLI scenes applied in Section 2.1 represents a large range of productivity/turbidity ($0 < [Chla] < 15 \text{ mg/m}^3$) from Amazon River basin, Mississippi River and Bay of Bengal to the Great Lakes. Our assumptions (e.g., use of a single sampling
function for MODIS across all channels; Fig. 2) in the simulation process have no
significant effects on the results. This was examined using a slightly different PSF over
three OLI scenes. The average APDs presented in Section 3.1 provide average estimates
for an overall error budget analysis when comparing gridded ocean color products at 1km
resolution. However, as discussed in Section 3.1, the actual per-pixel discrepancies may
differ depending on in-water features and viewing geometries.

Although the differences (Section 3.2) were found to reach up to ~18% in the blue-
green channels, the spatial mismatch in different (OLI) channels tend to agree in their
signs (Table 2) implying that even at highly spatially variable sites the impact on the
ocean color products derived from band-ratio algorithms (e.g., [Chla]) are expected to be
minimal. Note, however, that this does not hold true for all cases studied here, i.e., 10-
20% of the simulated matchups showed contradictory trends. The average statistics
(Table 2) extracted from more than 100 OLI scenes over six different coastal sites
provide a set of robust estimates for error budget analysis in ocean color product
validation chain in coastal waters. While the revisit cycle of these polar orbiters (SNPP,
Aqua, and Terra) similarly repeats every 16 days, we conducted a sensitivity study on the
choice of the orbit cycle where DOY=5 through DOY=20 orbits of Aqua-MODIS was
utilized for simulations over the MVCO site. The overall APD at the site changed only on
the order of 0.1% indicating that the choice of the 16-day orbit cycle is insignificant.

5. CONCLUSIONS

This study presents a novel, comprehensive approach to characterize the uncertainties
associated with the product intercomparisons and in-situ validation efforts induced by
different spatial sampling effects of three OC imagers. The high quality, moderate-
resolution (~30m) OLI-derived OC products obtained over various regions/locations are central to the results presented here. Here, we emphasize the critical conclusions of the study.

The following conclusions can be drawn from the results pertaining to the product intercomparisons at regional scales:

- Due to the differences in the spatial sampling schemes of MODISA and VIIRS, there is a viewing-angle (footprint-size) dependency on the product intercomparisons. Therefore, care must be taken when high-fidelity per-pixel intercomparison is desired.

- The mean absolute percent differences (APD) in product intercomparisons due to the differences in the spatial sampling are estimated to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the $R_{rs}(443)$, $R_{rs}(482)$, $R_{rs}(561)$, $R_{rs}(655)$, [Chla], $K_d(490)$, and $b_{bp}(655)$ products, respectively.

- The differences in the products in the offshore regions are mitigated if a pair of products is smoothed over window sizes of at least $7km \times 7km$.

The radiometric differences at coastal in-situ sites always include some level of uncertainty in the spatial representativeness of the site. With the strategies set forth here, we provide the following conclusions to give insights into the magnitude of these uncertainties:

- The ocean color observation centered on the stationary in-situ coastal sites provides the minimum temporally averaged bias and variability. Assuming residual striping/banding effects in the products, a $3 \times 3$-element window is recommended.
On the other hand, 5×5-element boxes yield both lower biases and uncertainties over clear open waters.

- The contribution of spatial sampling to differences between satellite and in-situ measurements in near-shore areas can reach as large as 18%. This varies according to the in-water spatial variability and the satellite orbit, which determines the footprint size (sensor viewing angle).

- The APD in the spatial representativeness of a field site (for Rrs products) is found, on average, to be 3.7%, 3.5%, 3.9%, 8.3% for the 443, 482, 561, and 655nm channels, respectively.

- The daily observations of VIIRS show less random variability (induced by spatial sampling) than those of MODISA and MODIST at the calibration sites (e.g., MOBY) as well as the coastal validation sites. In addition, the number of valid simulated matchups for VIIRS was found twice larger than that of MODIS suggesting that more robust statistical analysis is possible for the VIIRS products.

The results of this study, for the first time, allow for taking one step forward for a full quantification of the overall error budget analysis of coastal ocean products by isolating the errors associated with spatial sampling. Similar sensitivity analyses can be performed to estimate uncertainties/biases in spectral sampling and geolocation errors to further decompose the overall error budget. We further highlight the advantages of near-uniform along-scan spatial sampling (assuming no loss in the radiometric performance) for future ocean color missions like the Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) and the planned GEOstationary Coastal and Air Pollution Events (GEO-CAPE) to enhance our
ability in validating products and quantifying corresponding uncertainties for reliable monitoring of the changing coastal waters.

Acknowledgement

Financial support by the Geo-CAPE program at the NASA headquarters and support from Antonio Mannino with the NASA Ocean Biology Processing Group (OBPG) are greatly appreciated. We are also grateful to Robert E. Wolfe and Gary Lin with NASA GSFC’s Terrestrial Information Systems Lab for the discussions of spatial performance of VIIRS and MODIS instruments. The computing support at the Terrestrial Information Systems Lab by Miguel O. Román and Ed Masuoka is acknowledged. We are also grateful to the anonymous reviewers for their thoughtful comments that help improve this manuscript.

References


Appendix

Table A1. The OLI scenes processed for the product intercomparison study (Section 2.1) are tabulated.

<table>
<thead>
<tr>
<th>Scene ID</th>
<th>Scene ID</th>
<th>Scene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC80090262014248LGN00</td>
<td>LC80440342014285LGN00</td>
<td>LC81370452015076LGN00</td>
</tr>
<tr>
<td>LC80110302013227LGN00</td>
<td>LC80440352015064LGN00</td>
<td>LC81640402014310LGN00</td>
</tr>
<tr>
<td>LC8110322014086LGN00</td>
<td>LC80450342014276LGN00</td>
<td>LC81650392015064LGN00</td>
</tr>
<tr>
<td>LC80130322014100LGN00</td>
<td>LC80790152014210LGN00</td>
<td>LC81910212014115LGN00</td>
</tr>
<tr>
<td>LC80140372014299LGN00</td>
<td>LC80790162014210LGN00</td>
<td>LC81910292013208LGN00</td>
</tr>
<tr>
<td>LC8017032014096LGN00</td>
<td>LC80840122015168LGN00</td>
<td>LC81910292013224LGN00</td>
</tr>
<tr>
<td>LC80190312014270LGN00</td>
<td>LC80840132015168LGN00</td>
<td>LC81980222014068LGN00</td>
</tr>
<tr>
<td>LC80190402014046LGN00</td>
<td>LC81180372015071LGN00</td>
<td>LC82240592013327LGN00</td>
</tr>
<tr>
<td>LC80210402015079LGN00</td>
<td>LC81180392013241LGN00</td>
<td>LC82250582014225LGN00</td>
</tr>
<tr>
<td>LC80440342014109LGN00</td>
<td>LC81360452015069LGN00</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. The sites (indicated by boxes) where OLI scenes are processed to Level-2 OC products for intercomparisons of products at regional scales (Section 2.1). For these locations, the MODISA, MODIST, and VIIRS OC products were simulated according to their corresponding viewing geometries from DOY=1 to DOY=16 in 2015. The red dots denote the locations where simulated matchups were produced (Section 2.2).

Fig. 2. The band/detector average point spread functions (PSFs) shown for a) MODIS, b) VIIRS near-nadir zone (PSF-V3g), c) VIIRS mid-range zone (PSF-V2g), and d) VIIRS edge-of-scan zone (PSF-V1g). Note that it is assumed that the along-track response is rectangular (ideal response). All the functions have unit-area. The coordinates are in arbitrary pixel units.

Fig. 3. Examples of simulated MODISA, VIIRS, and MODIST swaths for [Chla] (mg/m²) fields derived from the OLI-derived [Chla] products over the Yangtze River mouth, East coast of China. The average view zenith angles (VZAs) are 58.18°, 51.5°, and 21.5° for MODISA, VIIRS, and MODIST swaths, respectively. The features are reproduced at different viewing conditions. Note that OLI and MODIST are in descending orbits. Also, the extremely turbid waters over the basin are masked.

Fig. 4. A typical histogram derived from product intercomparisons. Amongst different histogram-derived parameters, the Percent of Pixels (PoP) is shown above for various levels of relative percentage difference, i.e., RPD = 1%, 5%, and 10%. Also, histogram kurtosis indicates how spread is the distribution around the mean. The narrower the histogram, the more consistent a pair of products are.

Fig. 5. The kurtosis values (derived from the RPD histograms) are shown as a function of differences in mean VZAs (VZA). The subscript X denotes VIIRS (V) or MODIST (MT). The top row shows the asymmetric trends when MODISA and VIIRS products are compared. The x-axes denote ∆VZA = VZA_v - VZA_m. This trend implies that the products are more consistent when VZA_v > VZA_m, which yield similar footprint sizes for the two observations. The bottom row corresponds to the intercomparisons of MODISA and MODIST products as a function of ∆VZA = VZA_M - VZA_m. Although MODISA and MODIST are in afternoon and morning orbits, there is no particular trends found when comparing the associated products at different VZAs.

Fig. 6. The spatial interconsistency curves showing the percentage of pixels (PoP) found consistent at different |RPD| thresholds (x-axes). As the absolute RPD increases more pixels (% PoP) are expected to fall within the threshold. On average, more than 80% of the pixels are considered consistent when z=8% difference in products are adopted as the threshold.

Fig. 7. The ratio of MODISA-VIIRS and MODIST-MODISA intercomparisons (based on PoP) as a function of the uncertainty threshold (absolute RPD). Overall, MODISA and VIIRS products are more consistent than when products of MODIST and MODISA are compared.

Fig. 8. The spatial consistency curves shown for Rrs(443) as a function of scale, i.e., 1km×1km, 3km×3km, etc. The y-axis denotes PoP at z=1%, which increases as the effective grid cell size increases. The optimal scale, on average, is found at 7km.

Fig. 9. The simulated percent differences (PD) for Rrs(443) (Eq. 8) shown for the three AERONET-OC stations for all available OLI scenes (N) at the sites. The PDs are calculated for 3×3 simulated OC pixels and a representative OLI OC pixel. The PD ranges from -20% to +30% for these sites and is mainly dependent on the environmental conditions (in-water features) captured by the OLI scene. The MODISA and MODIST show more day-to-day variability with respect to VIIRS.

Fig. 10. The PD (%) shown for three OLI-derived Rrs(443) products (i.e., A, B, C, D, E, and F) for the MOBY site. The curves correspond to MODISA (red), MODIST (green), and VIIRS (blue) products. The solid lines denote PDs corresponding to 5×5-element windows. The larger variability associated with MODIST and MODISA with respect to VIIRS is noticeable.

Fig. 11. The overall mean absolute differences (APDs) computed for simulated MODISA (N=1091), MODIST (N=1084), and VIIRS (N=2043) for different window sizes shown for the OLI 443nm channel. The windows are centered over the AERONET-OC (costal) sites.

Fig. 12. The OLI-derived Rrs(443) noise (1/sr) is shown as a function of solar zenith angle (SZA). The standard deviation was calculated over 5×5-element windows over uniform bodies of water from various OLI scenes.
The product noise remains relatively stable for low to medium range SZA but increases beyond SZA=$58^\circ$. 

(N=75).