Recent Technology Advances in Distributed Engine Control

Dennis Culley
NASA Glenn Research Center
Cleveland, Ohio

Aerospace Control and Guidance Systems Committee (ACGSC)
March 29-31, 2017 Fairborn, OH
Outline

• Overview
• NASA Research
 – Modeling and Simulation
 – Dynamic Thermal Modeling
 – Advanced Smart Node Development
 – Hardware-in-the-Loop – Integration
 – Very High Temperature Electronics
• The Community of Practice
• Conclusion
NASA Mega-Drivers, Outcomes, & Strategic Thrusts

NASA’s Aeronautical Research Role
Address Research Needs within Three Overarching Trends Affecting Future Aviation

- **Mega-Driver 1:** Global Growth in Demand for High-Speed Mobility
- **Mega-Driver 2:** Global Climate Change, Sustainability, and Energy Transition
- **Mega-Driver 3:** Technology Convergence

Outcomes
Outcomes are Defined for Each of Three Time Periods

<table>
<thead>
<tr>
<th>Near Term: 2015-2025</th>
<th>Mid Term: 2025-2035</th>
<th>Far Term: Beyond 2035</th>
</tr>
</thead>
</table>

Strategic Thrusts
ARMD Research is Organized into Six Strategic Thrusts

- **Strategic Thrust 1:** Safe, Efficient Growth in Global Operations
- **Strategic Thrust 2:** Innovation in Commercial Supersonic Aircraft
- **Strategic Thrust 3:** Ultra-Efficient Commercial Vehicles
- **Strategic Thrust 4:** Transition to Low-Carbon Propulsion
- **Strategic Thrust 5:** Real-Time System-Wide Safety Assurance
- **Strategic Thrust 6:** Assured Autonomy for Aviation Transformation
The Role of Propulsion Controls

Perception: The Focus of Propulsion Controls is Operability
- Make the system perform as it was designed
- Not perceived as research, so much as it is engineering

This completely misses the power of controls and electronics, which is *the creation, processing, and use of Information*

Controls technology cannot advance system performance unless it assumes an active role in system design. Absent this interaction, controls can only optimize operability.
The advances being made in engine system technologies are impacting the integration of control hardware on the engine, in general, to the point where control hardware is becoming a limiting factor in engine system performance.

The Problem is the Hardware Architecture
Heilmeier: What are we trying to do?

Technology Level:
- We are changing interface definitions
- We are altering the way control systems are integrated

Customers Don’t Buy Technology, They Buy Capability

System Level:
- We are trying to provide a new benefit in terms of performance and/or cost
 - *Weight reduction* by replacing analog signal harnesses with networks
 - *Cost reduction* by designing modular, reusable LRUs
 - *Availability improvement* by increased fault detection and higher reliability
 - *Performance enhancement* by providing a hardware platform for advanced control applications
Centralized Architecture: A collection of transducers operated in a common system

Distributed Architecture: A system of asynchronous systems synchronized by a network

What is Distributed Engine Control?

In the Baseline it is a change in architecture, not inherently a change in function
Heilmeier: Risks, Barriers, and Payoffs

Risks:
- Doing nothing is not an option – controls becomes a performance limiting factor

Barriers:
- High temperature embedded electronics
- High temperature materials

Payoffs:
- Weight reduction
- Life cycle cost reduction
- Improved Availability
- Increased Safety
- Advanced Control Applications
 - Wide-Bandwidth Sensing and Actuation
 - Local Loop Closure
 - Information Infused Control
Distributed Engine Controls Research at NASA

- Modeling and Simulation
 - Smart node models
 - Communications
- Dynamic Thermal Modeling
- Advanced Smart Node Development
- Hardware-in-the-Loop – Integration
- Very High Temperature Electronics
The engine system model is decomposed into a collection of separate elements reflecting characteristics of the hardware:

- **Functions, Interfaces, and Data Flow** specific to the control architecture
- **System of Asynchronous Systems**
Smart Node Types

Sensor Node: Digitization at the source with signal processing

Actuator Node: Closed loop control of actuator subsystem

Data Concentrator Node: Communication bridge, local controller, or multifunction Node
Smart Node Modularity

IEEE 1451 Smart Transducers
Communication Network Complexity

- Serial data transfer imposes significant effects in terms of delay
- May not be possible to transfer all the data within a single control interval

Can the serial data transfer process be decoupled from control?
The Schedule Mask

- Schedule determines network throughput
- Enable block controls data flow
 - **Major Frame** describes the periodicity
 - **Minor Frame** describes the data transfer in and out of the controller within the control interval time
- Does not consider protocol, message size, transmission rate, or exact time of arrival
Simulation with Scheduling

Sim 1: 150 ms, Tx 375 ms, Nx 750 ms

Sim 2: 150 ms, Tx 375 ms
Simulation with Scheduling

Sim 1: 150 ms, Tx 375 ms, Nx 750 ms

Sim 2: 150 ms, Tx 375 ms

Control mode relies on additional use of limit regulators
Mounting electronics near the engine core requires understanding the environment.

The reliability of electronics are inversely affected by the peak, duration, and rate of change in temperature.

Standard **silicon electronics** have various temperature ratings based on packaging:
- Commercial: 0 °C to 70 °C
- Industrial: -40 °C to 85 °C
- Military: -55 °C to 125 °C

Silicon-On-Insulator (SOI) electronics < 300 °C

Silicon Carbide (SiC) electronics > 500 °C
Dynamic thermal models developed for
- Internal engine components
- Casing walls
- Cowl cavity
- Inner bypass duct wall
- Heat Soak-back

Linked to engine system simulation
A first order benefit of Distributed Control is the decoupling of the Control Law Processing function from the Input / Output function

- Game changer in terms of access to computational resources

The processing power and capability of embedded electronics on/near the engine casing directly affects the available control functionality. Understanding this new potential, and the applications for local loop-closure, directly determines the complexity and potential for new performance-enhancing engine control.

Local closed loop control enables a paradigm shift in capability, such as:

- Active Combustion Control
- Turbine Tip Clearance Control
- Active Flow Control
- Data Mining
- Wide Bandwidth Sensing and Data Reduction
Pressure sensing at the source eliminates long pneumatic tubing that presents maintenance and safety issues as well as limited signal bandwidth.

Smart Node Pressure Sensor

- What is the processing capability of a High Temperature Smart Node?
- What information can now be extracted from the plant and how can it be used?
- How does this impact control?
- What is the value to the engine system?

- How do you model and test this type of system

Hardware in the Loop simulation

Collaborative Simulation Environment for SBIR and component suppliers to develop new technology concepts

Collaborative Hardware Environment to verify high temperature embedded technologies, especially related to “system of asynchronous systems” integration

High-Fidelity Real-Time Modeling

Hardware-in-the-Loop Validation

Real-Time Target

Rolls-Royce DECSS
HIL Simulation Flexibility

- Currently a dry test bench
- Engine Plant model can be easily interchanged
- Any Control hardware element can be implemented in simulation or hardware
- Have demonstrated various hardware/simulation combinations of smart node functions
- Control data can be exchanged through a selection of interfaces both analog and digital
- Expect to incorporate control network interfaces as they become available
Multi Simulation Capability & Results

Results of simulations performed in different platforms

- **NPSS** (s-function) engine plant model with TMATS controller on Windows® platform
- **Baseline** TMATS AGTF30 engine plant model & controller on real time HIL
- **Distributed** TMATS AGTF30 engine plant model & controller with distributed nodes and communications on real time HIL
Multi Simulation Capability & Results
Very High Temperature Electronics

- Small signal silicon carbide electronics capable of +500 °C operation for thousands of hours
- Increasing complexity from 100’s to 1000’s of transistors
Community of Practice

DECWG®
Distributed Engine Control Working Group Consortium

Governing Board
Establish and guide Technology Focus group objectives and goals

Technology Focus Groups

- High Temperature Electronics
- Communications Standards
- HT Materials for Electronic Control Assemblies
- Power & Electrical Systems
- Propulsion and Airframe Integration
- Certification Standards
Engine Control Eco-System

NASA Controls Technology
- Growth
- How do we use the technology to enhance performance, operability, & safety?
- How do you sustain the Eco-System?

DECWG Precompetitive Technology
- Collaboration
- Common barriers
- The common “materials” for controls

Engine Control System Technology
- Differentiation
- Closely held intellectual property
Summary

- Distributed Engine Control Architecture is a Response to the Implications of Next Generation Engine Technologies Identified in the NASA Strategic Implementation Plan
 - Ultra-high bypass
 - Compact Gas Turbine
 - Hybrid Gas-Electric Propulsion

- The Traditional Control Hardware Approach Would Impose System Penalties That Ultimately Limit the Capabilities of the Propulsion Engine and Vehicle.

- The New Control Hardware Architecture Enables New Capabilities for Engine Performance, Availability, and Safety.
Progress

The Focus at NASA has been:

♦ Modeling and Simulation tools that represents the hardware characteristics of
 • Distributed Control Elements – Smart Nodes
 • Engine Control Network Communications and Data Flow

♦ Construction of a Real-Time Hardware-in-the-Loop Laboratory with ability to incorporate Next Generation Engines

♦ Modeling Tools for the Dynamic Thermal Environment on the Engine Core

♦ Development & Testing of Wide-Bandwidth, High Temperature Applications for Smart Nodes
Impact

♦ Our Tools Help Define Control System Requirements and Inform Systems Analysis of the Net Benefits to the New Technologies Planned for Next Generation Engine Systems

♦ High Degree of Collaboration Between Government and Industry Helps to Leverage Research Dollars

♦ Initiates a New Emphasis on the Integration of Control, Power, and Thermal Management for Next Generation Propulsion Systems
Next Steps

- Integration of Modeling Tools for the Multi-Disciplinary Simulation of Next Generation Engine Systems
- FY18: Demonstration of Advanced, Wide-Bandwidth, High-Temperature Embedded Smart Node Technology
- Engine System Demonstrations
Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Kratz</td>
<td>NASA LCC</td>
</tr>
<tr>
<td>Eliot Aretskin-Hariton</td>
<td>NASA LCC</td>
</tr>
<tr>
<td>George Thomas</td>
<td>N&R Engineering</td>
</tr>
<tr>
<td>T. Shane Sowers</td>
<td>Vantage Partners</td>
</tr>
<tr>
<td>Glenn Beheim</td>
<td>NASA LCS</td>
</tr>
<tr>
<td>Phil Neudeck</td>
<td>NASA LCS</td>
</tr>
<tr>
<td>David Spry</td>
<td>NASA LCS</td>
</tr>
<tr>
<td>Norm Prokop</td>
<td>NASA LCP</td>
</tr>
<tr>
<td>Mike Krasowski</td>
<td>NASA LCP</td>
</tr>
<tr>
<td>Larry Greer</td>
<td>NASA LCP</td>
</tr>
</tbody>
</table>
The Evolution of Engine Control Architecture

FEDERATED

CONTROL LAW PROCESSOR

FADEC CORE-MOUNTED, WITH ACTIVE COOLING

DATA CONCENTRATOR

LEGACY EFFECTORS

SMART EFFECTORS

MORE DISTRIBUTED

FADEC BECOMES CARD IN AVIONICS

INTEGRATED VEHICLE CONTROL

DISTRIBUTED

NETWORK

NETWORK

NETWORK

NETWORK

MORE DISTRIBUTED

SMART EFFECTORS

SMART EFFECTORS

SMART EFFECTORS

SMART EFFECTORS

LOWERCORE-MOUNTED, UNCOOLED

ANALOG

ANALOG

ANALOG

ANALOG

LEGACY EFFECTORS

LEGACY EFFECTORS

LEGACY EFFECTORS

LEGACY EFFECTORS

LOWER WEIGHT

MORE EMBEDDED, MORE MODULAR

COLD

TEMPERATURE

HOT