The Leading Human Factors Deficiencies in Unmanned Aircraft Systems

June 2017
Scott Howe
Research Test Pilot
NASA Armstrong Flight Research Center

AIAA-Aviation 2017
What: Explore the top human factors deficiencies in unmanned aircraft systems ...from a user’s perspective

Why? To educate/encourage UAS designers & testers on:

- the importance of “good design” for increased safety and mission success (no matter how that’s defined by the operator/user).

Today’s Roadmap:

- Why do you care?
- Background (“The Problem”)
- Top Human Factors Deficiencies
- Conclusions/Takeaways

“I'm a lot more interested in people than I used to be. I used to be most interested in abstract ideas, and people were an afterthought, but that's changed a bit.” -- Malcolm Gladwell
Because Good Human Factors means...

** Less user errors due to interface confusion, info overload, poor ergonomics & interface, automation confusion

Which translates into...

- *Increases* likelihood of “mission” success
 - Reliable & capable of getting from A to B; & accomplish tasks within desired parameters
- *Enables* safe integration into the National Airspace
 - Protect lives & property; build/maintain public confidence & trust in UASs
- *Your UAS’s success = future “mission” opportunities*
 - FAA trusts it; public accepts it; customer wants more

Is this relevant today?

- Yes → rapid growth of UAS sales, use, and certification.
Background / Perspective

- Me: 4,100 hrs flight time (USAF operational; test; NASA)
 - 1800 hrs Manned Flying (900+ hrs F-15C/D)
 - 2300 hrs Unmanned Flying (MQ-1, MQ-9, RQ-4, X-56)
 - Flying unmanned aircraft since 2002
- Survey: Small sample of current military operators, testers, & former UAS manufacturer pilots
 - Slanted towards med-to-large UAS’s with cockpit/console style ground control stations (GCSs)
 - Applies to any UAS with some autonomy and a pilot.
Background – Human Factors

- What is Human Factors (HF) & Human-Machine Interaction/Interface (HMI)?
 - HF (FAA) – multidisciplinary study of human capabilities and limitations...
 - ...applied to equipment, systems, facilities, procedures, jobs, environments, training, staffing, and personnel management...
 - for safe, comfortable, and effective human performance
 - HMI – “doing” requires interaction (human & hardware)
 - The Interface: the interactive surface of that hardware

- "The Problem" = Rapid development of the machine ... Forgetting the operator in the design ... Over-reliance on automation
Automation & Complex Modern Cockpit displays:

• **Pros** -- Safety: decrease stress/fatigue; increase thinking/monitoring; reduce human error

• **Cons**
 - False security (overreliance); Insecurity during failures (what’s it doing?); Critical info missed (Fixation on peripheral info)
 - Increased reaction time when out of the loop (should I intervene?); Complacency; Confusing info during failures
UAS Design:

• **Areas of Concern** (from FAA, Test Community, etc)
 – Human-automation interaction (*trust; mode awareness; disengagement behavior*);
 – Pilot-centric GCS design (*displays; sensory deficit*);
 – Traffic information (*separation assurance*);
 – Contingency management (*lost link status*);
 – Disengagement Behavior;
 – General over-reliance on automation

Now – on to the specific deficiencies......
Top UAS Human Factors Deficiencies

Overview

1. Lack of a design standard (ground station HMI)
2. Inadequate command interfaces in "highly-autonomous" UASs
3. Limitations to See & Avoid capability (& visual nav & recognition)
4. Lack of seat-of-the-pants & audio sensory cues
5. Lack of depth perception (for landing or other proximity-critical tasks)
• Historically, aircraft were/are required to conform to industry standard aviation HMI design elements (sticks, yokes, throttles, flight instruments, heads up displays, seats, visibility (out the window)).

• UASs came on the scene – many manufacturers; no rules

• We can't dive into this one without first talking about the basics of Human Factors in Design...
Cockpit design (ergonomics, anthropometrics, information) is important for all sorts of HF reasons:

• **Fatigue** – “mission tasks” and duration should drive design & layout of control station
 – display monitors and graphics design template and environmental lighting (eye fatigue)
 – physical layout and reach considerations
 – seat comfort/adjustability
 – environmental controls (temp)

• **Audio/Aural** – good audio enables good communication
 – selectable feeds; adjustable
• **Visual** – many aspects
 – Camera FOV; refresh rate of video link & flight parameters
 – Limited bandwidth - determining critical high-rate parameters vs non critical low-sample data
 – Contrast/color/design scheme of buttons and symbols and switches (software and hardware)
 – Location of critical vs. non critical info (central 30 deg critical visual cone vs peripheral areas); design-eye height of horizon line in plane with pilot's eye (assumes vertical adjustment of seat or displays).
 – **Latency** (delay between input and desired output); due to processing, signal path, servo speed – Large latency leads to PIO (pilot induced oscillation)

• **Anthropometrics** - accessible to a range of physical body types based on intended pool of pilots
• **Cognitive** - info in the right places, understandable, actionable

 – Standard units? Useful scale? Presentation of values (dials, tapes, raw numbers, bars/sliders; how many?; groupings; density; location/arrangement).

 – Buttons/switches organized by a familiar (aviation) scheme
 • By context? (Landing checklist; Lost-Link Emergency)
 • By system? (Fuel, Electrical, Link, Navigation, etc)

 – Avoid information overload (too many parameters)
 • Key info - easy to locate; top layer (not buried)
 • Intelligently bring up the right info at the right time
Importance of Cockpit Design (cont.)

- “Information Overload” ... Uniqueness = Unfamiliarity
 - Typical manned pilot - trained in traditional aircraft (FAA-certified standard inceptors, gages, flight displays)
 - Unique UAS GCS designs seem foreign... require experience/much practice to gain safe proficiency.
- Displayed info should simple, without diluting/sacrificing key decision-making info: aircraft state, change (rate of change), command/feedback, environment/surroundings, emergency interfaces.
– Emergencies
 • Upon detection, emergency info should be prioritized, highlighted, and displayed
 • Only essential info to understand the problem and resolve the emergency (buttons/dialogues)
 • Include airspace awareness to get to safe landing site.
 • Critical “emergency-only” switches should normally be “guarded” with 2-step actuation, but quickly/intelligently accessible.
 • Increases pilot's capacity to respond to the EP
 • Pilot involvement in design is critical for it to be relevant & effective.

Now, on to the list…
1. Lack of a Design Standard (GCS)

- FAA airworthiness certification standards (UAS) lag the rapid growth and arrival of UAS into the NAS structure...

- Wide range of GCS designs, from various designers (some with little aviation experience; or failing to involve aviators in the design process)... resulting in designs shaped by:
 - Incorrect/underdeveloped mission requirements
 - Marketing novelty
 - Rough edges of very new Tech
 - Misapplied manned cockpit traditions
 - Divergence from aviation standards (video game/smartphone)
 - Detrimental modifications (hasty/no pilot involvement)
1. Lack of a Design Standard (cont.)

- **Impact** = huge variety in interface configs and very non-standard flight control inceptors.
- **Consequence of non-standard, poor HMI:** pilot confusion, fatigue, errors, damage/loss of UAS.
 - Pilot misperceives UAS’s status in emergency...
 - Maybe critical info is not currently in view... *i.e.* “Battery - Low! Land within 5 minutes!”
 - Misprioritizes actions, incorrectly responds to emergency ... leads to unexpected vehicle behavior, & maybe loss of mission, airspace violation, or damage / loss of vehicle.
2. Inadequate Command Interfaces

• (Particularly for "Highly autonomous" UAS)
 – “Highly” (not fully): operator has command of only higher levels of automation (*autopilot commands; mission routing; transponder; radio*)

• Poor Interface(s) - Can lead to pilot input errors & unintended aircraft responses.

• GCS Configurations
 – Commonly configured w/ stick & throttle; sometimes also keyboard/mouse
 – Highly-autonomous UAS may only have keyboard/mouse since automation does not require pilot inputs to pitch/roll/yaw/throttle (i.e. RQ-4)
2. Inadequate Command Interfaces (cont.)

• Highly Autonomous UAS HMI
 – Programmed with many autonomous outcome decision trees; (pilot more of a mission manager than operator)
 – Interface - Commands entered into dialogue boxes/sliders/etc, via mouse/keys/touchscreen - altitude, orbit/loiter mode, airspeed, heading override, etc.

• Problem with simple text entry is two-fold:
 – Text entry fields can look identical (critical vs routine).
 • Highlight and/or “Guard” (2-step) critical inputs (prevent accidental activation).
 – No tactile interface with a text box; Place cursor in the proper field; Eyes jump from keyboard to text field (and back) to verify entry; opportunity for errors!
 • A knob may have 3 discrete positions (entries)... a text field may have 100s of possibilities.
3. Limitations to See & Avoid Capability

• (includes navigation and feature recognition)
• Due to video technology limitations (cost, bandwidth, size), remote pilots’ eye receives less visual information than the airborne pilot's human eye.
 – Lack of Depth perception (mono-vision)
 – Limited in higher contrast settings (sunrise, sunset, sun/lights in camera FOV); Low light environments.
 – Wide FOV vs human peripheral vision, & Zoomed FOV vs human focal vision; Auto-focus
 – Bandwidth / framerate / latency / (cost)
 – Video quality dependent on data link quality
 • Graceful degradation vs. sudden loss
 – Resolution / Acuity - as displayed in GCS
 – Tracking - human eye capability coupled with head motion (fast, precise, integral, stable, always ON).
3. Limitations to See & Avoid (cont.)

— UAS Advantages: Zoom, multispectral (IR), image processing (de-haze), info overlay (lat/long, elevation, shape recognition, other aircraft location)... *multiple cameras*

• **Less info = difficulty noticing:** traffic, weather changes, distant landing airfields, small terrain references, obstructions on the runway/taxiway, or things obscured by the sun.

— Cameras

 • FOV Trade off: Zoomed detail vs. peripheral info vs. “displayed” FOV (i.e. wrap-around monitors)
 • Fixed (landing) camera: stable/known
 – aligned with aircraft's flightpath
 • Slewable camera: find, track targets, clear the way
4. Lack of Sensory Cues

- Specifically, Seat-of-the-pants & Audio cues
- Lack of cues limits pilot's ability to easily/immediately understand the aircraft's state or changing state(s).
- SOTP + Audio are 2 significant senses missing from UAS flying
 - Engine vibration (normal/abnormal)
 - Engine noise changes
 - G-force changes (turns/vertical maneuvers; turbulence; aircraft configuration changes--flaps, CG shift, etc)
 - Airframe vibrations/oscillations (flutter; mech failures)
- Requires “replacement” cues: other sensing & cueing relayed or synthesized to the GCS pilot
 - Can be real (relayed) or synthetic (simulated) stimuli
 - *Aircraft sensors*: Engine noise (rpm); wind noise (high airspeed); rumbling/buffeting (near stall speed)
Adequate sensory “feed” vs. available link bandwidth
Cues must be intuitive, low-latency, and distinguishable even under higher pilot workload
 - Visual displays, heads-up cues, audio, seat-rumble, stick shaker, other physical cueing)
More is not always better (saturation) – Balance!
 - Don’t overuse Visual: Lights, symbols, gages & numbers
 - Audio considerations: freq; warble; pulse; repetition; pattern; variation (approaching limits); or even voice.
 - Bad: too many; not intuitive; emergency similar to normal tones; voice not clear
 - Seat "knocker" (gear/touchdown)
 - Stick shaker (command received; approaching limit)
 - Less critical cues - able to be silenced/decluttered
 - Tolerable/comfortable for duration of the mission
5. Lack of Depth Perception

- (for landing or other proximity-critical tasks)
- **Landing is more challenging without depth perception (stereo vision)**
 - Inaccurate height estimation for touchdown (ground-rush)... causes inconsistent timing of landing flare maneuver
 - **Manned landing relies** on the senses -- a memorized, repeatable 3D "sight picture" of runway shape, distance, location in windshield, & closure rate; **plus** G-forces, engine vibration, wind noise, & stick/throttle position
 - GCS pilot needs these translated into useful cues!
 - When to start the flare; How much to correct?
 - Replacement Cues - Laser Altimeter; Heads-up symbology; speed/throttle position aids; Rate of descent cues (symbols, tones)
5. Lack of Depth Perception

- Depth perception is critical for ground operations too!
 - Landing roll – Speed vs. required braking vs. runway remaining (critical for larger/heavier UAS)
 - Taxi, turns, identifying taxiway/crossings/parking spot
 - Obstacles - light poles, fences, overhangs, gates, powerlines – requires “replacement” mitigation (i.e. distance cues; proximity/closure rate; HD video; obstacle/shape recognition; line-following guidance).

- Ultimately lack of depth perception is “less info”
 - Results in delayed pilot decisions & inputs.
Conclusion/Recommendations

• Instead of burying important data or switches ... Make an intuitive, easy to navigate operator menu hierarchy
• Instead of wasting valuable hardware/screen real estate with unneeded data ... Organize & prioritize important info/switches, to be accessible without hiding important info... smart/intuitive.
• Instead of pilot's video being an afterthought, pursue quality new technologies (video and bandwidth) that are mission-enhancing
• Don't underestimate the "missing" senses; consider ways to incorporate other sensory cues in the design
• Don't underestimate importance of safety surrounding takeoff & landing phases; design for it, & incorporate pilot design inputs.
• Pursue further info/education on standard (best) design practices (source material for design guidelines)
• Instead of overreliance on autonomy and making design for Highly autonomous UAS GCSs an afterthought, use intuitive Command Input means (displays, buttons, layouts) & ensure special critical buttons are guarded.
• To compensate for challenges with video and monovision,
 – use new/reliable tech such as stereovision
 – miniaturized ultra HD video
 – automated modes for finding/tracking traffic or points of interest (360° camera; head-tracking device; etc.)
 – Develop depth-perception aids - stereoscopic vision, sensors, displays with enhanced cues & heads up info.

Success Criteria?
– **Video Goal** = No measurable difference between the system and a pilot's eye while conducting relevant flight tasks.
– **Overall Goal** = UAS should be equal or better at conducting the mission than a manned aircraft

……..*Obtainable?*
……..*Obtainable!*
Summary - Takeaways

• Making it intuitive... means anticipating what the user will think, need, & do in any situation
 – Know the Mission – team together (engineers, designers, pilots) to understand what/how to accomplish the mission.
 – Rely on industry standards/styles, new tech, common (best) design practices... to design the UAS & GCS around a well-thought out set of mission requirements.

• BE CREATIVE! AND IMPLEMENT IT THE RIGHT WAY
Suggested Reading:

- Role of Human Factors in the FAA (FAA)
- Human Factors Considerations in the Design and Evaluation of Flight Deck Displays and Controls (FAA)
- Human Factors Design Guidelines for Multifunction Displays (FAA, 2001)
- Integration of Civil UAS in the NAS Roadmap (FAA, 2013)
- FAA Human Factors Policy (Order 9550.8)
- FAR Part 23 & Part 25 – Airworthiness Standards; Subpart F