Testing the Definition of the ESC Envelope

June 15, 2017

Mark A. Vincent

Raytheon

Customer Success Is Our Mission
Introduction

• The previous effort, including a successful Change Control Request, addressed shrinking the size of the Earth Science Constellations’ (ESC) Envelope by reducing the Margin.

• Fundamental to the purpose of the Envelope is the case where the argument of perigee of the secondary object circulates from 90 degrees to 270 degrees.

• This (“outside of the envelope, always outside the envelope”) case was tested both numerically in a spreadsheet and analytically.

• Results showed how it is important to include the fact that a secondary with a different semi-major axis has a different frozen eccentricity value.
Mission Operations Working Group
June 13-15, 2017

Current Definition

Satellite A with Mean semi-major axis sma_A and a maximum Mean eccentricity e_{AMAX} is said to be completely within the Envelope if and only if:

$$|sma_R - sma_A| + |sma_R * e_R - sma_A * e_{AMAX}| < Margin + Frozen Orbit Tolerance$$

Satellite B with Mean semi-major axis sma_B and a maximum Mean eccentricity e_{BMAX} is said to be completely outside the Envelope (that is, completely below or completely above) if and only if:

$$|sma_R - sma_B| - |sma_R * e_R - sma_B * e_{BMAX}| > Margin + Frozen Orbit Tolerance$$

Where:

- $sma_R =$ Mean semi-major axis of the 705-km Reference Orbit
- $e_R =$ Mean eccentricity of the 705-km Reference Orbit
- $Margin = 0.5$ km
- $Frozen Orbit Tolerance$ based on a maximum eccentricity deviation of 0.0002 (this is equivalent to approximately 1.5 km)

Any satellite that satisfies neither of the conditions of Satellites A or B is said to be traversing the Envelope.
Motion in Eccentricity Space

General Motion around Frozen Eccentricity

Motion around Frozen Eccentricity of Orbit with sma less than Reference sma
Testing the Extreme Cases

- From Sweetser & Vincent 2013*: when considering only J_2 and J_3 of the gravity field a^*e_F is a constant for a constant inclination, hence, for small Δe_F and Δa:

 \[\frac{Δe_F}{e_F} = -\frac{Δa}{a} \approx -\frac{Δa}{a + Δa} \]

- First look at apogee to apogee separation when secondary orbit has ω = 90°

 \[Δr = a_R(1+e_R) - (a_R+Δa)*(1+Δe + e_R(1 - Δa/(a_R + Δa)))] \]
 which simplifies to
 \[Δr = Δa - (a_R + Δa) Δe \]

- Next look at separation between reference perigee to secondary apogee when secondary has ω = 270°

 \[Δr = a_R(1 - e_R) - (a_R+Δa)*[1+Δe - e_R(1 - Δa/(a_R + Δa)))] \]
 which again simplifies to
 \[Δr = Δa - (a_R + Δa) Δe \]

- That is, the separation between the ellipses is approximately the same independent of the orientation of the secondary orbit and with the same approximations is the “outside the envelope” constraint value
Conclusions

- Couple of comments on previous analysis:
 - Higher order zonal terms contribute a small amount including no longer making a^*e_F a constant, however as discussed in the paper, the combined contributions of J_4, J_5 and J_6 are about an order magnitude less; contribution higher terms will be even smaller - overall Envelope definition is good to 10’s of meters if not better (that is, a small percentage of the 500 m Margin)
 - The fact that (for J_2 and J_3) a^*e_F is a function of the sin(i) suggests the Envelope is more applicable to Constellation entry and exit and other sun-synch neighbors rather than random orbital debris, but this could be studied further

- Overall the Envelope definition passed the test and should continue to be utilized