Rheological Properties of Quasi-2D Fluids in Microgravity

Torsten Trittel,1 Ralf Stannarius,1 Alexey Eremin,1 Kirsten Harth,1 Noel Clark,2 Joseph Macleman,2 Matthew Glaser,2 Cheol Park,2 Nancy Hall,3 and Padetha Tin4

1Otto-von-Guericke University Magdeburg (Germany); 2University of Colorado (Boulder, CO); 3NASA Glenn Research Center (Cleveland, OH); 4Universities Space Research Association (Cleveland, OH)

Liquid Crystals

- Liquid crystals (LCs) are anisotropic liquids,
- They possess the fluidity of a true liquid, as well as varying degrees of long-range orientational and positional order that are normally associated with crystalline solids

Science Background

The smectic layer structure facilitates the preparation of freely suspended films with thicknesses of few molecular layers. With lateral extensions up to several cm, aspect ratios can exceed 10^6. Such films may serve as models for 2D liquids.

The OASIS Experiment on the International Space Station (ISS)

Sample modules with smectic bubbles are imaged in the OASIS experiment chamber. The setup makes use of the Microgravity Science Glovebox aboard the ISS.

OASIS Objectives

- Exploitation of the unique characteristics of freely suspended liquid-crystal films in a microgravity environment, to advance the understanding of fluid state physics.
- Microgravity suppresses the sedimentation of objects on the films, this allows long time observations of droplets or smectic islands on LC bubbles.

The OASIS-Tex Experiment

Freely suspended smectic film with thermocontacts

- LC: 5-n-Octyl-2-(4-n-octyloxyphenyl)pyrimidine

The film thickness was determined from reflectivity of the three different RGB-LEDs in the early stage of the experiment. During the experiment the marked 500 nm thick homogeneous part spreads over the whole film.

TEXUS Suborbital Flight

The OASIS-Tex project was scheduled as a parameter test for OASIS. It provided experimental data on the Marangoni instability in smectic films.

TEXUS-52 (left) with the OASIS-Tex setup started successfully in Esrange (Sweden) on April 27, 2015, and reached a height of 250 km providing 6.5 minutes of microgravity (μg). The experiment (right) was built and tested in cooperation with German Space Agency (DLR) and Astrium.

OASIS-Tex Results

- For temperature gradients $ΔT < 9.6$ K/mm we observe a drift in the film from the warm towards the cold contact.
- Velocity ($ΔT < 8$ K/mm) is approximately 25 μm/s.
- Velocity ($ΔT > 8.8$ K/mm) is approximately 70 μm/s

Space-time plot of the experimental situation. Each vertical line represents the same vertical line between the two contacts out of the original images. The timeline is from left to right.

- Smectic material collects at the cold contact.
- Removal of the gradient leads to remigration of material into the film from the former cold contact.

Conclusions

- We observe a practically thresholdless Marangoni flow, with hot material replacing cold film material, even in small thermal gradients,
- Only in large thermal gradients ($−10$ K/mm) we find a convective instability.
- Previous observations under normal gravity [Godfrey and van Winkle, Phys. Rev. E54, 3752 (1996)] can be explained by meniscus-driven thermal convection.