Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

Jim Nesbitt, Tim Gabb, Sue Drapera, Bob Millerb, Ivan Loccic and Chantal Sudbrack

NASA Glenn Research Center, Cleveland, OH

a Retired, b Vantage Partners, LLC, c University of Toledo

ICMCTF 2017, San Diego, CA
April 24th, 2017
The need for corrosion protection of superalloy disks

Fatigue Life at 704°C (1300°F)

Uncoated ME3 Fatigue bars

<table>
<thead>
<tr>
<th>Time</th>
<th>Fatigue Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hrs</td>
<td>100,000</td>
</tr>
<tr>
<td>8 hrs</td>
<td>98%</td>
</tr>
<tr>
<td>24 hrs</td>
<td>0</td>
</tr>
</tbody>
</table>

Hot corrosion associated with pitting can severely reduce fatigue life of disk superalloys
Purpose:
Develop coatings to mitigate oxidation and hot corrosion attack in order to maximize low cycle fatigue (LCF) life of coated disk alloys

Approach:
Evaluate effect of various coating factors on LCF life
 Coating chemistry, deposition process, coating thickness, etc.
Surface treatments:
 • Pre-coat (polish, grit blast, wet blast, shot peening)
 • Post-coat (shot peening, Low PO$_2$ diffusion anneal)

Evaluate effect of coatings on LCF life
 • Coated versus uncoated
 • With and without oxidation (OX) and hot corrosion (HC) exposures
1. As-coated with low PO\textsubscript{2} diffusion anneal
 A. Coat LCF bars with Ni-Cr coatings
 B. Low PO\textsubscript{2} diffusion anneal (8 hrs, 760°C, PO\textsubscript{2} of 10-17 atm O\textsubscript{2})
 - Diffusion bonds coating and substrate and promotes protective Cr\textsubscript{2}O\textsubscript{3} formation
 C. Evaluate LCF life (760°C, 1400°F)

2. Evaluate effect of shot peening
 A. As-coated LCF bars
 B. Shot peen coated surface (16N-200%)
 C. Low PO\textsubscript{2} diffusion anneal
 D. Evaluate LCF life

3. Evaluate effect of environmental exposures
 A. As-coated LCF bars + shot peen + low PO\textsubscript{2} diffusion anneal
 B. Oxidation exposure (500 hrs, 760°C (1400°F) in air)
 C. Hot corrosion exposure (2 mg/cm2 72% Na\textsubscript{2}SO\textsubscript{4}-28% MgSO\textsubscript{4} salt, 50 hrs, 760°C (1400°F) in static air), sonic water clean
 D. Evaluate LCF life
Two similar disk alloys were tested
- LSHR (Low Solvus, High Refractory) (W+Nb+Mo+Ta=10.1 wt.%)
- ME3 (W+Nb+Mo+Ta=9.0 wt.%)

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Co</th>
<th>Cr</th>
<th>Al</th>
<th>Ti</th>
<th>W</th>
<th>Nb</th>
<th>Mo</th>
<th>Ta</th>
<th>Zr</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSHR</td>
<td>50.14</td>
<td>20.4</td>
<td>12.3</td>
<td>3.49</td>
<td>3.48</td>
<td>4.24</td>
<td>1.51</td>
<td>2.72</td>
<td>1.59</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>ME3</td>
<td>50.48</td>
<td>20.6</td>
<td>13.0</td>
<td>3.23</td>
<td>3.59</td>
<td>1.97</td>
<td>0.89</td>
<td>3.73</td>
<td>2.38</td>
<td>0.05</td>
<td>0.02</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Reduced gauge section is Low Stress Ground (LSG) + longitudinal polish

Both ME3 and LSHR are very similar in composition and in LCF life. Both large ME3 bars and small threaded LSHR bars had the same polish in the reduced gauge section.
Three Ni-Cr-Y Coatings (Low Cr, Med Cr, High Cr)

<table>
<thead>
<tr>
<th>Coating Designation</th>
<th>Target 1 (wt.%)</th>
<th>Target 2 (wt.%)</th>
<th>Coating Thickness* (um)</th>
<th>Deposited Coating Composition** (wt.% Cr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cr</td>
<td>Ni-27.3Cr-0.12Y¹</td>
<td>-</td>
<td>20.4 ± 0.6</td>
<td>29.1</td>
</tr>
<tr>
<td>Med Cr</td>
<td>Ni-27.3Cr-0.12Y</td>
<td>100% Cr</td>
<td>21.5 ± 0.9</td>
<td>37.0</td>
</tr>
<tr>
<td>High Cr</td>
<td>Ni-27.3Cr-0.12Y</td>
<td>100% Cr</td>
<td>19.8 ± 1.9</td>
<td>44.4</td>
</tr>
</tbody>
</table>

¹ Analyzed composition, nominal given as Ni-28Cr-0.15Y
* Thickness measured on pins after 16N-200% shot peen and 8 hr low PO₂ anneal
** Composition measured by EDS

Coatings applied at SwRI, San Antonio, TX using plasma enhanced magnetron sputtering (PEMS)
“Spits” (molten droplets)
Longitudinal defects (vertical in image)
Spits on surface
Coating texture follows longitudinal polishing marks on surface, creates longitudinal “cracks” or gaps.
Dense, good interface, indication of columnar structure, 2nd phase in High Cr
High Cr

Dark particles (Ni-87.2%Cr)

Matrix (Ni-36.5%Cr)

Ni-Cr Binary Phase Diagram

γ-Ni (fcc)

α-Cr (bcc)

760°C

Dark, 2nd phase is α-Cr (high 90’s %Cr)
Some α-Cr in the lower Cr coatings
Fatigue Life (No Shot Peening, No OX, No HC)

Fatigue life increases with Cr content of coating, High Cr coating attained ~70% that of uncoated bars.

Fatigue Stress Cycled at Max/Min = 840/-425 MPa, 0.33 hertz
** Includes 8 hr low PO₂ diffusion anneal
- Only very small, scattered transgranular cracks initiated on the surface
- Non-metallic inclusions sometimes initiated secondary internal cracks
Fracture surface of Low Cr-coated sample

Fractography indicates primary crack causing failure initiated at surface spits.
Side view of coated surface after LCF testing of Low Cr-coated sample

Perpendicular fatigue cracks initiated at surface defects (spits)
Fracture surface of High Cr-coated sample having longest life

Spits usually initiated perpendicular fatigue cracks at the coating surface, though some additional coating cracks occurred elsewhere.

High density of cracks!
Med Cr-coated sample

Mounted longitudinally to show fatigue cracks near the site of primary crack initiation
Shot Peening (SP) increases the fatigue life for all these coatings, by varied extents.
Effect of Subsequent Oxidation (500hr/760°C) + Hot Corrosion (50hr/760°C) on Fatigue Life

ox + HC decreases fatigue life, but the High Cr coating gave minimal reduction in life.
Conclusions:

- The presence of NiCr-Y coatings, deposited by PEMS, can reduce the LCF life of the disk alloys without any environmental exposures.

- LCF life increased with increasing Cr content of the coating.
 - The High Cr coating (Ni-44Cr-0.15Y) consistently gave the highest LCF life of the three coatings examined, attained 80% of uncoated life.

- Coating defects (primarily “spits”) can initiate cracks; oxidation down gaps/cracks further degraded the LCF life.

- Shot peening can increase the LCF life of coated bars for these conditions.

- OX + HC decreases LCF life of coated and uncoated bars.
 - Hot corrosion attack (pitting) was observed for uncoated specimens, yet the coatings were effective in preventing pits under the given conditions.
 - The LCF life of the High Cr coated bars after OX + HC exceeded that of uncoated bars.

- Coatings can crack more readily than the uncoated superalloy, and the cracks can propagate into the substrate to decrease the LCF life, even without environmental exposures.
Future Directions:

• Deposit coatings by HiPEMS; explore ways to reduce coating defects.

• Explore effect of coating composition. Why did Ni-44Cr do better than Ni-29Cr even without exposures?

• Examine effects of different pre- and post-coating surface treatments.

• Explore stronger, more crack-resistant, but still corrosion resistant-coatings.

Acknowledgements

Funding for this effort was provided by the Advanced Air Transport Technology (AATT) Project Office, Aeronautics Research Mission Directorate.

Special thanks to Jack Telesman for some of the fractography, Don Humphrey (retired) for the low PO$_2$ diffusion anneals and Ronghua Wei at Southwest Research Institute for coating deposition and helpful discussions.