Initial Data Analysis Results for ATD-2 ISAS HITL Simulation

Hanbong Lee

4th Joint Workshop for KARI-NASA ATM Research Collaboration
Korea Aerospace Research Institute, Daejeon, Korea
May 23-25, 2017
ATD-2 ISAS HITL Simulation

• Objectives
 – To evaluate operational procedures and information requirements for
 • Tactical Surface Metering Tool
 • APREQ procedures between ATC Tower and Center
 • Data exchange elements between Ramp and ATC Tower

• Scenarios
 – IFR rules in clear weather at Charlotte airport (CLT)
 – No GA / cargo flights
 – TMI flights included: APREQ/CFR, EDCTs, and MIT
 – North flow: 68 departures and 85 arrivals, with 3 turnaround
 – South flow: 63 departures and 89 arrivals, with 4 turnaround
Tactical Surface Metering Tool

- Provides pushback advisories to ramp controllers
- Departure demand control
 - Absorb delay in AMA and Ramp area by adding buffers in computing pushback time (TOBT)
 - Prevent runway over-saturation or starvation
 - Prevent too much or too little gate hold
 - Implement tunable parameters to maintain pressure on runway queue depending on demand/capacity

\[
TOBT = \max (EOBT, \ TTOT - X \times \text{taxi time} - Y)
\]

Note) TOBT: Target Off-Block Time, EOBT: Earliest Off-Block Time, TTOT: Target Take-Off Time
HITL Simulation Runs

- Total eight runs having different runway configuration, metering buffer value, and MIT constraint conditions
 - Different durations, leading to different numbers of flights

<table>
<thead>
<tr>
<th>Run Name</th>
<th>Runway Configuration</th>
<th>Metering Value (min)</th>
<th>MIT Restriction</th>
<th>Duration (sec)</th>
<th>Dep No (OFF)</th>
<th>Arr No (IN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_6</td>
<td>North flow</td>
<td>More hold 6</td>
<td>Yes</td>
<td>3536</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>N_8</td>
<td></td>
<td>8</td>
<td>Yes</td>
<td>3979</td>
<td>44</td>
<td>38</td>
</tr>
<tr>
<td>N_10</td>
<td></td>
<td>10</td>
<td>Yes</td>
<td>3014</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>N_12x</td>
<td></td>
<td>Less hold 12</td>
<td>No</td>
<td>4034</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>S_8</td>
<td>South flow</td>
<td>More hold 8</td>
<td>Yes</td>
<td>3204</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td>S_10</td>
<td></td>
<td>10</td>
<td>Yes</td>
<td>3145</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>S_12</td>
<td></td>
<td>12</td>
<td>Yes</td>
<td>3332</td>
<td>49</td>
<td>39</td>
</tr>
<tr>
<td>S_12x</td>
<td></td>
<td>Less hold 12</td>
<td>No</td>
<td>3380</td>
<td>49</td>
<td>43</td>
</tr>
</tbody>
</table>
Performance Metrics

• Gate hold time
• Taxi times
 – Ramp area and AMA
 – Eastbound and Westbound
• Runway throughput
 – Accumulated takeoffs
• Surface congestion
 – Number of departures in AMA and ramp area
 – Departure queue length and average queue time
• Traffic Management Initiatives (TMI)
 – APREQ and EDCT flights
Mean gate hold times by runway
- Based on the given EOBT times and actual out times
- All departures taken off, including TMI flights
- More holding with the lower metering value for Eastbound

<table>
<thead>
<tr>
<th>Dep No</th>
<th>N_6</th>
<th>N_8</th>
<th>N_10</th>
<th>N_12x</th>
<th>S_8</th>
<th>S_10</th>
<th>S_12</th>
<th>S_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>20</td>
<td>24</td>
<td>20</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27</td>
<td>13</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

Gate Hold Time
• Mean taxi-out times by metering value
 – No significant impact by metering value
 – Affected by other factors such as run duration, runway changes, and TMI constraints
Taxi-Out Time by Runway

- Mean taxi-out times by runway
 - Longer taxi distance for Westbound flights
• Mean taxi-in times by metering value
 – All arrivals that reached gates
 – More holding at gate can increase taxi-in times due to gate conflicts.

<table>
<thead>
<tr>
<th>Arr No</th>
<th>34</th>
<th>38</th>
<th>26</th>
<th>50</th>
</tr>
</thead>
</table>

| Arr No | 28 | 34 | 39 | 43 |

Taxi-In Time
Mean taxi-in times by runway

- Affected by other factors such as run duration, runway changes, and interaction with departures

Taxi-In Time by Runway

<table>
<thead>
<tr>
<th>Arr No</th>
<th>N_6</th>
<th>N_8</th>
<th>N_10</th>
<th>N_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>27</td>
<td>20</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arr No</th>
<th>S_8</th>
<th>S_10</th>
<th>S_12</th>
<th>S_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
<td>10</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effects of Run Durations

- Mean values of gate hold times and taxi-out times look proportional to run durations.

![Run duration vs. Gate hold time](chart1)

- Run duration vs. Gate hold time

![Run duration vs. Taxi-out time](chart2)

- Run duration vs. Taxi-out time
Runway changes from schedule to actual assignment can impact the airport performance.

North flow

<table>
<thead>
<tr>
<th></th>
<th>N_6</th>
<th>N_8</th>
<th>N_10</th>
<th>N_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td>36R (Eastbd)</td>
<td>33 -> 24</td>
<td>33 -> 24</td>
<td>33 -> 29</td>
<td>33 -> 27</td>
</tr>
<tr>
<td>36C (Westbd)</td>
<td>35 -> 44</td>
<td>35 -> 44</td>
<td>35 -> 39</td>
<td>35 -> 41</td>
</tr>
<tr>
<td>36R -> 36C</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>36C -> 36R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

South flow

<table>
<thead>
<tr>
<th></th>
<th>S_8</th>
<th>S_10</th>
<th>S_12</th>
<th>S_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td>18L (Eastbd)</td>
<td>41 -> 39</td>
<td>41 -> 36</td>
<td>41 -> 39</td>
<td>41 -> 34</td>
</tr>
<tr>
<td>18C (Westbd)</td>
<td>22 -> 24</td>
<td>22 -> 27</td>
<td>22 -> 24</td>
<td>22 -> 29</td>
</tr>
<tr>
<td>18L -> 18C</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>18C -> 18L</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>
Accumulated takeoffs

- Similar takeoff rates, except for No MIT cases

Accumulated takeoffs - North flow

Accumulated takeoffs - South flow
Runway Throughput by Runway

Accumulated takeoffs on 36R - North flow

Accumulated takeoffs on 36C - North flow

Accumulated takeoffs on 18L - South flow

Accumulated takeoffs on 18C - South flow

Simulation time (minute)

Takeoffs (ac)

- N_6
- N_8
- N_10
- N_12x

Simulation time (minute)

Takeoffs (ac)

- S_8
- S_10
- S_12
- S_12x
Queue Size from Gate/Spot to Runway

Surface count - North flow

Surface count - South flow

AMA count - North flow

AMA count - South flow

Simulation time (minute)

Count (ac)
Queue Size by Runway

AMA count to 36R - North flow

AMA count to 18L - South flow

AMA count to 36C - North flow

AMA count to 18C - South flow

Simulation time (minute)

Count (ac)

N_6 N_8 N_10 N_12x

S_8 S_10 S_12 S_12x
Time Spent in Departure Queue

• Mean queue time per aircraft by runway
 – (Sum of waiting times in queue during simulation run) / (Number of departures taken off)
 – Expected longer queue time with the higher metering value

<table>
<thead>
<tr>
<th>Dep No</th>
<th>N_6</th>
<th>N_8</th>
<th>N_10</th>
<th>N_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>27</td>
<td>13</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dep No</th>
<th>S_8</th>
<th>S_10</th>
<th>S_12</th>
<th>S_12x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

(sec/ac) North flow

(sec/ac) South flow
• Mean gate hold time comparison
 – TMI flights try to meet Controlled Takeoff Time (CTOT), whereas other flights follow pushback advisories (TTOT).
 – Different number of TMI flights for each run can affect.
• Mean taxi-out time comparison
 – Longer taxi time for TMI flights, compared to other flights
 – For South flow, longer taxi time for TMI flights along with the higher metering value (less hold, longer queue)
Summary

• A HITL simulation was conducted to evaluate a tactical surface metering tool for ramp controllers at CLT.

• As the metering value increases, less gate holding and longer taxi times in departure queues were expected, but the simulation results might be affected by other factors:
 – Runway changes
 – Run duration
 – TMI flights

• APREQ/EDCT flights tends to have longer taxi times to meet the given takeoff times.