Modeling of Gaseous Oxygen Liquefaction Inside Mars Ascent Vehicle Propellant Tank

Xiao-Yen Wang & David Plachta
NASA Glenn Research Center

Presented By
Xiao-Yen Wang

Thermal & Fluids Analysis Workshop
TFAWS 2016
August 1-5, 2016
NASA Ames Research Center
Mountain View, CA
• Introduction
• Concept Schematic of tube-on-tank concept
• Objectives of the CFD analysis
• Details of the CFD model
• CFD model results:
 • Incoming gas with temperature:
 • 273 K (warm case, baseline)
 • 100 K (cold case)
 • Tank wall boundary condition:
 a) Define wall temperature at 90 K
 b) Define the heat flux as 12 W/m²
• Conclusions
• Forward works
The in-situ production of propellants for Mars missions will utilize Mars atmospheric carbon dioxide (CO₂) to produce oxygen.

- The oxygen is then cooled, liquefied, and stored to be available for Mars ascent propulsion system, which could be up to 2 years after liquefaction starts.
- Recent investigations have demonstrated the feasibility of using high-efficiency reverse turbo-Brayton-cycle cryocoolers to:
 - Cool the oxygen gas
 - Liquefy the oxygen gas
 - Achieve zero boil-off
 - Control the pressure of oxygen within a tank
In-situ Production – Liquefaction - Storage

1. CO₂ collection and 2. Oxygen production

3. LIQUEFACTION

CRYOCOOLER FOR LIQUEFACTION AND HEAT

HEAT EXCHANGER

Heat Rejection

Fluid

MARS ENVIRONMENT

4. LARGE STORAGE TANK, ZERO BOIL-OFF

LOX

HEAT LEAK LOAD

DRY GOX at 273 K and 1 atm

SENSIBLE PLUS LATENT LOAD

Heat Rejection

Fluid

MARS ENVIRONMENT
• The gaseous Neon circulating in the cryocooler system is maintained slightly below liquid oxygen saturation temperature and is routed through a network of cooling tubes.
• The oxygen gas produced from the in-situ production process is introduced into the chilled tank.
Objectives of the CFD analysis

• Model the proposed active thermal liquefier design (tube-on-tank) to reduce the uncertainty of the heat transfer coefficient inside the tank
• Model liquefier configuration options to create an efficient system
 • Meet the requirement of the liquefaction time
 • Minimize the mass and power for the active thermal liquefier system
• Understand the relationship between the incoming gaseous O₂ temperature versus tank surface area and condensation rate of the gas inside the tank
• Investigate the advantage of pre-chilling gaseous O₂
CFD model approach using ANSYS Fluent

- 2D axisymmetric, nc = 11201, nv = 11785, dt = 0.01 s
 - Solver: Pressure-based, transient, coupled
 - Multiphase model: Mixture/slip Velocity/Implicit Body force
 - Turbulence model: shear stress transport (SST) k-ω (2 eqns)
- Tank wall boundary condition
 a) Set temperature: 90 K
 b) Set heat flux: 243.6 W/20.3 m² = 12 W/m² (based on the lift of the cryocooler)
Inlet gaseous O_2:
- Warm gas at 273 K (baseline)
- Cool gas at 100 K

Mass flow rate:
- $2.2 \text{ kg/hr} = 6.11 \text{ g/s}$ (baseline)

Initial conditions:
- $T = 100 \text{ K}$
- VOF of the liquid oxygen: 0

Inlet tube:
- 1” diameter at the top of the tank
• Liquefaction occurs at the bottom of the tank
ANSYS Fluent results: $t = 13.3 \& 38$ mins, case (a)

- Free convection inside the tank and near the interface of liquid and gaseous O_2
- Flow streamline contours shown
• Heat transfer coefficient near the dry wall is around 50 W/m²-K.
• Natural convection calculated from CFD model is an order of magnitude (50 W/m²-K) larger than hand calculations using Grashof numbers (0.3 – 1.85 W/m²-K)
Time history of the volume-average gas temperature

- Incoming gas: 273 K and 100 K

(a) ANSYS Fluent results

- In graph (a), with tank wall at 90 K, GOX chills down very quickly, within 10 minutes for both cases - incoming gas at 273 K and 100 K. This is the optimal case.
- In graph (b), the tank wall heat flux is fixed. This is the worse case.
 - With the incoming gas of 273 K, it takes much longer to cool the gas down and the gas is much warmer.
 - With the incoming gas of 100 K, it takes 20 minutes to chill down.
Time history of the mass of Lox

- **Incoming gas: 273 K and 100 K**

 - **Graph (a)** wall temperature fixed at 90K; graph (b) heat flux is fixed.
 - The liquid oxygen inside the tank at $t = 40$ minutes is
 - For incoming gas of 273 K:
 - 1.48 kg in case (a), 0.55 kg in case (b), a factor of 2.7.
 - For incoming gas of 100 K:
 - 1.52 kg in case (a), 0.95 in case (b), a factor of 1.6.
ANSYS Fluent results

Temperature contour of mixture
- Incoming gas: 273 K

- Graph (a) wall temperature fixed at 90 K; graph (b) heat flux is fixed.
- The warm gaseous O₂ chills down within smaller volume with a cold wall.
Temperature contour of the mixture

- Incoming gas: 273 K

- Graph (a) wall temperature fixed at 90 K; graph (b) heat flux is fixed.
- With a cold wall, condensation occurs more surface area of the tank.
Graph (a) wall temperature fixed at 90 K; graph (b) heat flux is fixed.
With a cold wall, more liquid O\textsubscript{2} is formed at the bottom of the tank.
specify T_{wall} as 90 K (optimal case)

Specify Heat flux as BCs (worst case)

ANSYS Fluent results of gas temperature
Conclusions

• The condensation rate predicted by CFD analysis depends on the tank wall boundary condition. We presented two bounding cases.
 – For case (a), with an assumed 90K tank wall the gas chills down very quickly, within 10 minutes for both incoming gas of 273 K and 100 K. This is the optimal case.
 – For case (b), with a constant heat flux assumed, for the incoming gas of 273 K, the condensation rate is much smaller and larger portion of the tank area near the top stays warm. This is could be the worse case.
 – Heat transfer around the majority of tank is natural convection driven.
 – Incoming warm gas induces mixing currents and forced convection occurs near the inlet tube.

• Natural convection calculated from CFD model is an order of magnitude (50 W/m²-K) larger than hand calculations (0.3 – 1.85 W/m²-K)

• Tube-on-tank concept works for the baseline condition (warm case). MAV tank provides enough heat transfer area for liquefaction. There are some concerns near the top of the tank, however, it is beyond 95% fill level.

• Pre-chilling gaseous O₂ will speed up the liquefaction rate inside the tank as long as the lift of the cryocooler is allocated enough for the tank itself.
Future works

• 1D thermal model in Matlab and 3D thermal model in Thermal Desktop are on-going to include the cooling fluid in the model to get a more realistic tank wall boundary conditions.

• Test plans on the tube-on-tank concept are on-going. The objectives of the test plan are
 – To integrate the reverse turbo-Brayton-cycle cryocoolers system with the tank and control system (existing hardware)
 – To Investigate the performance of the active thermal liquefier system under
 • Different fill levels
 • Different feeding gaseous oxygen temperatures
 • Different control schemes

• Validations between the test results and model results will be performed.
Great appreciation goes to Daniel Hauser and Wesley Johnson at GRC for valuable technical discussions and inputs.

AES Lander Technology project’s support for this analysis.

eCryo project’s support for 20207/25/2016 TFAWS trip.
Back up charts

![Graph 1: Tank Dry Area vs. Tank Height](image1)

![Graph 2: Tank Fill Level vs. Tank Height](image2)