Spacecraft observations and analytic theory of crescent-shaped electron distributions in asymmetric magnetic reconnection

1 Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
2 Los Alamos National Laboratory, Los Alamos, New Mexico, USA
3 Department of Physics and Astronomy, West Virginia Univ., Morgantown, WV 26506 USA.
4 Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
5 Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Toulouse, France and
6 University of New Hampshire, Durham, NH, USA

(Dated: July 20, 2016)

Supported by a kinetic simulation, we derive an exclusion energy parameter \mathcal{E}_X providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix.

Magnetic reconnection converts magnetic energy into kinetic energy of ions and electrons both during solar flare events [1] and reconnection observed in situ in Earth's magnetosphere [2]. Common for most theoretical models of reconnection is an emphasis on the dynamics of the electrons and their role in breaking the frozen in condition for the electron fluid, permitting the magnetic field lines to change topology and release the stored magnetic stress in naturally occurring plasmas [3]. NASA’s new Magnetospheric Multiscale (MMS) mission is specially designed to address this question, as it can detect in situ possible mechanisms including electron inertia, pressure tensor effects, and anomalous dissipation for decoupling the electron motion from the magnetic field lines [4].

The identification of diffusion regions in the vast dataset now being recorded by MMS relies in part on numerical and theoretical models for distinct signatures of the reconnection region and the associated separatrix structure. Recent simulations of crescent-shaped electron distributions [2, 6] have been proposed as a robust signature to find diffusion regions. The crescents are observed in two flavors: perpendicular and parallel to the magnetic field [7]. The perpendicular crescent shapes are predicted theoretically in Refs. [8, 9], using 1D reasoning valid near the X-line, with electrons interacting strongly with a normal electric field E_N.

Considering 2D geometries, here we provide a general derivation which accounts for the occurrence of both the perpendicular and parallel crescents. Only high-density (magnetosheath) particles with sufficient energy can cross the diffusion region to the low-density (magnetospheric) inflow region. Thus, the diffusion region acts like a Maxwell Demon allowing only the most energetic particles across. This provides an explanation for why the distributions are crescent shaped rather than filled in at lower energies. The requirement of having a sufficient energy is here quantified in terms of what we call the exclusion energy \mathcal{E}_X. As such, magnetosheath electrons with kinetic energies $\mathcal{E} > \mathcal{E}_X$ can access magnetic field lines on the magnetospheric side of the separatrix, exiting the region along the separatrix with nearly perfectly circular perpendicular motion. The parallel streaming and the absence of electrons with $\mathcal{E} < \mathcal{E}_X$ yields the parallel crescent-shaped distributions, and their origin is thus different from that proposed in Ref. [7]. Contrary to the models applicable near the X-line [8–9], we find that the perpendicular crescents along the separatrix are comprised of well magnetized electrons with nearly circular perpendicular orbit motion.

On October 16, 2015, NASA’s MMS mission had an encounter with an active reconnection region at the dayside magnetopause. The location of the encounter is sketched by the red rectangle in Fig. 1(a), as it was established by the analysis in Ref. [7]. Based in part on the recorded time series of the magnetic fields and ion flows, it was concluded that three of the four MMS spacecraft (MMS1, MMS2, and MMS3) passed the diffusion region on its northern side, while MMS4 passed it on the southern side. The four spacecraft all recorded similar structures, and here we consider data obtained by MMS3 and MMS4. The paths near the separatrix of these two spacecraft are sketched in Fig. 1(b), crossing from the low plasma density magnetosphere into the reconnection exhausts, in which the plasma is mainly provided by the much higher densities of the magnetosheath [10].

The distinct types of electron trajectories indicated in Fig. 1(b) are important to the structures in the electron distribution function. Passing electrons, labeled B and C, stream into the reconnection region along magnetic field lines, and do not change the signs of their magnetic field aligned (parallel) velocity as they pass through the region. Trapped electrons, illustrated by the green line...
The measured magnetic field. With the “raw” 3D electron distributions into a coordinate gyro-averaged distributions by relative to 13:07:02.000 UT. In the following we denote are schematically illustrated by the cyan-black dashed in the low density magnetospheric inflow [16]. Trajectories for asymmetric reconnection trapping is most significant analogous to that of symmetric reconnection [13–15], but with the magnetic field lines towards the reconnection course of several bounce motions they convect slowly MMS3 and MMS4 for selected time points ∆t by the Fast Plasma Investigation (FPI; [17]) onboard calculated based on the full 3D electron data recorded ∥A labeled \(\Phi_{\parallel} \) and the acceleration potential \(\Phi_{\parallel} = \int_{-\infty}^{\infty} E_{\parallel} dl \) of Ref. [12]. During the course of several bounce motions they convect slowly with the magnetic field lines towards the reconnection separatrix. The basis of this kinetic electron behavior is analogous to that of symmetric reconnection [13–15], but for asymmetric reconnection trapping is most significant in the low density magnetospheric inflow [16]. Trajectories of magnetosheath electrons near the separatrix (including their possible reflection back toward the X-line) are schematically illustrated by the cyan-black dashed lines labeled D in Fig. 1(b).

The distribution functions displayed in Figs. 1(c–e) are calculated based on the full 3D electron data recorded by the Fast Plasma Investigation (FPI; [17]) onboard MMS3 and MMS4 for selected time points \(\Delta t \) relative to 13:07:02.000 UT. In the following we denote gyro-averaged distributions by \(\bar{f} \). The distributions \(\bar{f}(v_{||}, v_{\perp}) \) in Figs. 1(c–e) are obtained by first rotating the “raw” 3D electron distributions into a coordinate system \((v_{||}, v_{11}, v_{12})\) aligned with the direction of the measured magnetic field. With \(v_{\perp} = \sqrt{v_{11}^2 + v_{12}^2} \), values of \(\bar{f}(v_{||}, v_{11}, v_{12}) \) are then computed as the average of \(\bar{f}(v_{||}, v_{11}, v_{12}) \) over the azimuthal gyroangle \(\phi = \tan^{-1}(v_{12}/v_{11}) \).

We first consider \(\bar{f}(v_{||}, v_{\perp}) \) of MMS3 in Fig. 1(c) for \(\Delta t = 16 \) ms. Corresponding to the orbit classification in Fig. 1(b), the regions of trapped electrons are labeled A, while the regions of passing electrons are labeled by B and C. The trapped passing boundaries are obtained based on the local magnetic field and by estimating \(\Phi_{\parallel} \approx 45 \) V by methods given in [18]. In agreement with Refs. [13, 15], this is evidence that the strong parallel electron heating noted in Fig. 3(i) of Ref. [7] is mainly due to energization by \(\Phi_{\parallel} \).

The distributions in Fig. 1(c) for \(\Delta t = 46, 76 \) ms are similar to that at \(\Delta t = 16 \) ms, except that these include an additional feature within the trapped region. We mark this feature D, as it is caused by energetic magnetosheath electrons penetrating across the separatrix to this location in the magnetospheric inflow. As MMS3 progresses across the separatrix, \(\bar{f}(v_{||}, v_{\perp}) \) continues to change. At times \(\Delta t = 226, 256 \) ms, the regions of incoming passing electrons with \(v_{\parallel} > 0 \) (labeled B in the \(\Delta t = 16, 46, 76 \) ms plots in Fig. 1(c)) are now dominated by pitch angle mixed magnetosheath electrons streaming out along the separatrix from the reconnection region. These magnetosheath electrons are, naturally, also subject to parallel acceleration (deceleration) by \(\Phi_{\parallel} \) and the mirror force, such that a fraction of these will be reflected back toward the diffusion region. Due to their larger density, the magnetosheath electrons dominate the full area in \((v_{||}, v_{\perp})\)-space labeled D, previously occupied by trapped electrons and region B passing electrons.

The distributions in Fig. 1(d) are cuts through \(\bar{f}(v_{||}, v_{11}, v_{12}) \) with \(v_{||} = 0 \). For \(\Delta t = 76, 226 \) ms complete rings in the \((v_{11}, v_{12})\)-plane are clearly visible. Meanwhile, at \(\Delta t = 46 \) ms, the ring is incomplete and only a crescent is observed. For this location, the
recorded magnetic field is relatively strong, $B = 17.8$ nT, corresponding to a Larmor radius for the typical crescent electrons of less than 2 km. As shown in Fig. (1e), the distributions recorded by MMS4 are similar to those of MMS3. However, the main and key difference (also discussed in Refs. [7, 9]) is the reversed $v_{||}$ sign of the ($v_{||}, v_{\perp}$)-crescent for $\Delta t = 136$ ms in Fig. (1e). This is consistent with MMS4 crossing into the southern outflow, such that the $v_{||} < 0$ passing electrons (region C) are eliminated in favor of magnetosheath electrons streaming southward, away from the diffusion region.

To explore the dynamics shaping the electron distribution function, we consider the trajectory in Fig. 2(a) calculated using the magnetic and electric fields of a fully kinetic simulation (to be further described below). This electron enters the reconnection region on a trapped trajectory originating in the magnetosheath. It then travels into the diffusion region and exits on the magnetospheric side of the separatrix. Only later does it reach the reconnection exhaust from the magnetospheric side. Apart from the electron’s brief encounters with the diffusion region, it is well magnetized with $k^2 = R_B/\rho_i \gg 1$ [20], where R_B is the radius of curvature of the magnetic field and ρ_i is the Larmor radius of the electrons. On the other hand, the regions of chaotic unmagnetized electron dynamics in Fig. 2(a) are identified by the red areas where $1/\kappa = \sqrt{\rho_i/R_B} > 0.25$. Here the electron magnetic moment $\mu = mv_{||}^2/(2B)$ are not conserved, and their pitch angles θ are randomized [11, 21].

The above observations motivate a model for the electron dynamics as sketched in Fig. 2(b), where the electron motion outside the chaotic regions is described by the guiding center approximation. For 2D geometries, the canonical momentum in the out-of-plane (M) direction of the guiding centers $P_{M,g} = qA_M + mv_{||}B_M/B$ is a constant of the guiding center motion. Here A_M is the out-of-plane component of the magnetic vector potential, with the reconnection X-line characterized by the value $A_{M,x}$ observed at the saddle point in the profile of A_M. Upstream and close to the separatrix, B_M is small so that $P_{M,g} \approx qA_M$, and it follows that guiding centers are locked to contours of constant A_M.

A quantitative condition required for magnetosheath electrons to jump to the magnetospheric inflow region is obtained through the use of the canonical momentum $P_M = qA_M + mv_M$ of the full electron motion. This quantity is a constant of motion throughout the cross section, including the chaotic orbit region. Variations in mv_M determine the orbit size and allow the Fig. 2(a) electron to move off its particular A_M-contour by the amount $\Delta A_M = m\Delta v_{\perp}/q$. Thus, a magnetosheath electron entering the chaotic region on a guiding center trajectory characterized by $P_{M,g} = qA_M$ can cross the separatrix only if the orbit permits a variation

$$\Delta A_{Mx} \equiv A_M - A_{Mx} \ .$$ \hspace{1cm} (1)

This requires an initial minimum kinetic energy in the magnetosheath given by

$$E_{\text{sheath}} = \frac{q^2(\Delta A_{Mx})^2}{2m} \ .$$ \hspace{1cm} (2)

Magnetosheath electrons passing through the diffusion region are energized by the strong E_N electric field shown in Fig. 2(b), characterized by $q\Phi_N$ in Fig. 2(c), with $\Phi_N = -\int_0^N(\Delta A_{Mx}) E_z dN$ evaluated along a cut starting at the X-line (short white line in Fig. 2(b)). The minimum kinetic energy is then given by $E_X = q\Phi_N + E_{\text{sheath}}$, where the E_{sheath} contribution dominates for $\Delta A_{Mx} > 0.8$ (see Fig. 2(d)). The energization by E_N is in the perpendicular direction, but for $1/\kappa < 0.25$ pitch angle mixing transfers a random fraction to the parallel direction for each electron. Meanwhile for $1/\kappa < 0.25$, there is no pitch angle mixing such that the energization $E_{X\perp}$, identified in Fig. 2(c), remains in the perpendicular direction. Thus, any magnetosheath electron reaching suf-
efficiently deep into the magnetospheric inflow will have a minimum perpendicular energy given by $E_{X\perp}$, acquired outside the region of point angle mixing.

We may now derive a simple model for the drift kinetic guiding center distribution $f_g(x_g, v_{\parallel}, v_{\perp})$ of magnetosheath electrons on the magnetospheric side of the separatrix. Consistent with the simulation, we assume that the chaotic region is characterized by a Maxwellian distribution $f_{\text{slin}}(E)$. Using Liouville mapping of the phase density $(df/dt = 0)$, it follows that

$$f_g \approx f_{\text{slin}}(E - q\Phi_N) H(E - E_X) H(E_{\perp} - E_{X\perp}),$$

where $H(E)$ is the Heaviside step function. The heating by $q\Phi_N$ is included by evaluating f_{slin} at $E - q\Phi_N$.

To validate the model in Eq. (4), we consider a kinetic simulation performed with the VPIC code using asymptotic plasma parameters identical to those of Ref. [4]. Here, however, the initial plasma current is carried by a modified Harris sheet [24]. The reconnecting magnetic field and background temperatures vary as tanh(N/d_i) (d_i based on the magnetosheath density), and the density profile is adjusted to ensure magnetohydrodynamic pressure balance. The simulation is periodic in L and has conducting boundaries in N, with a total size of 4032×4032 cells $= 20 d_i \times 20 d_i$. Separate populations of magnetosheath ($N > 0$) and magnetosphere ($N < 0$) particles with different numerical weights are loaded so that plasma mixing may be tracked over time and so that both regions are resolved with 400 particles per cell per species. Other simulation parameters are a mass ratio of $m_i/m_e = 400$ and $\omega_p/e\omega_{ce} = 1.5$ (based on magnetosheath field and density).

Particle distributions are computed at time $t = 30/\omega_{ci}$, when reconnection has reached a quasi-steady state, and as indicated in Fig. 2(b), we use electron data collected $0.7d_i$ away from the X-line along the separatrix. The data includes only electrons originating from the magnetosheath side and is collected as a function of ΔA_{Mx} for four locations within a narrow region reaching ρ_c from the separatrix into the magnetospheric inflow. Here ρ_c is the characteristic Larmor radius of a typical crescent electron (with relativistic momentum $m\gamma v \approx mc$). Fig. 3(a) shows the sequence of the full distributions integrated over the parallel velocity $f_{\parallel} = \int f(x, v)dv_{\parallel}$, revealing crescent-shaped and ring distributions qualitatively consistent with the MMS observations. Meanwhile, Fig. 3(b) shows the sequence of distributions also integrated over the parallel velocity $f_{\parallel}(x_g, v_{\perp}) = \int f_g(x_g, v)dv_{\parallel}$, but now with the numerical electrons binned as a function of their guiding center locations. As such, $f_g(x_g, v)$ is the distribution of guiding centers, defined without approximation through $f_g(x_g, v) = f(x_g - \rho, v)$, where the direction of the vector $\rho(\phi) = m v \times B/(qB^2)$ is a function of the gyro-phase ϕ. The f_{\parallel} distributions are characterized by nearly perfect circles in a frame slightly off-centered from the origin by the $E\times B$-drift; in this frame these crescent electrons follow nearly perfectly circular perpendicular gyro-orbits, and $f_g(x, v_{\perp})$ is nearly independent of ϕ.

The gyro-averaged distribution of guiding centers $f_g(x_g, v_{\parallel}, v_{\perp})$ in Fig. 3(c) are also compiled from the simulation particle data, where $v_{\perp} = (v_{\perp 1}^2 + v_{\perp 2}^2)^{1/2}$ is evaluated in the frame of the $E\times B$-drift. The exclusion energies E_X of Fig. 2(d) are shown by the magenta lines, accurately predicting the lower energy bound of the numerical distributions. The matching distributions in Fig. 3(d) are obtained from Eq. (4), based on values of $q\Phi_N$, $E_{X\perp}$, and E_X marked in Figs. 2(c,d). The combination of the exclusion energies reproduces the behavior of the $(v_{\perp 1}, v_{\perp 2})$-ring distributions with $v_{\parallel} \approx 0$, evolving into crescent-shaped $f_g(v_{\parallel}, v_{\perp})$-distributions for locations very close to the separatrix, $\Delta A_{Mx}/B_\perp < \rho_c/2$. We have verified that the model distribution in Eq. (4) is applicable along the separatrix of the full simulation domain, excluding only the region in Fig. 2(b) where the electrons are unmagnetized.

It is evident from Fig. 3(b-d) how E_X rapidly increases with ΔA_{Mx}, practically eliminating all electron guiding centers for $\Delta A_{Mx} > B_\perp\rho_c$. However, the actual electron location is displaced from the guiding center $x = x_g - \rho$. Depending on ϕ, this allows electrons to penetrate up to an additional ρ_c into the magnetospheric inflow. As the separatrix is approached from the magnetopause inflow, the first magnetosheath electrons to be observed are those with ϕ placing their guiding centers closer to the separatrix. As such, the crescent distributions are a manifestation of the diamagnetic drifts associated with the rapidly changing pressure of the magnetosheath electrons at the magnetopause/exhaust separatrix.

In summary, we have extended the analysis of the MMS electron data of Ref. [6] and shown that the observed parallel heating of the magnetospheric inflow is consistent with the trapping model of Refs. [13, 14]. Furthermore, the $(v_{\parallel}, v_{\perp})$-crescent distribution encountered by MMS can be accounted for by extending the electron dynamics of the trapping model to include magnetosheath electrons penetrating into the magnetosphere. Here the cutoff energy E_X forbids electrons with insufficient diffusion region orbit size to reach into the magnetospheric inflow. The profile of E_X depends strongly on the distance from the separatrix, where the chaotic region works like a Maxwell Demon, only letting the most energetic magnetosheath electrons pass to the magnetospheric side. The perpendicular crescent-shaped distributions are formed due to the spatial gradients imposed by E_X. They are a direct manifestation of the diamagnetic drift of well magnetized magnetosheath electrons in a boundary layer with a width of about an electron Larmor radius all along the low density separatrix.

