Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

Jim Tuttle, Ed Canavan, and Amir Jahromi

NASA Goddard Space Flight Center, Code 552 Greenbelt, Maryland, 20771, USA
Introduction

• Many NASA missions include cryogenic instruments
• Spacecraft and instruments include optimized materials/assemblies
 - Highly-conductive annealed pure metals
 - Engineered materials
 Polymers
 Alloys
 Composites
 Ceramics
 - Customized electrical cables/harnesses

• Candidate materials often selected based on room temp. properties
• Often longitudinal cryogenic thermal conductivity is unknown
• We developed a thermal conductivity facility for JWST in 2004
• We have characterized ~ 30 samples since then
Concept

• For one-dimensional heat flow in a material,

\[\frac{\dot{Q}}{A} = \kappa \frac{dT}{dx} \]

- \(\kappa \): thermal conductivity [W/m/K]
- \(\dot{q} \): power [W]
- \(A \): cross sectional area [m\(^2\)]
- \(T \): temperature [K]
- \(x \): axial distance [m]

• Basic approach
 - Flow heat through sample
 - Measure temperature gradient

• We chose to perform “absolute” measurement
 - Relative measurements: lower precision
Simple Approach

• Control base temperature
• Apply heat to sample’s free end
• Measure (small) ΔT

$$\kappa(\bar{T}) = \frac{L \dot{Q}}{A \Delta T}$$

• L: sample length [m]
• A: cross section [m2]
• $\bar{T} = \frac{T_{\text{Sample}} + T_{\text{Base}}}{2}$
Complications

• Ohmic heating in heater leads
• Heat conducted in leads
• Heat radiated to surroundings
 \[T_{\text{Hot}}^4 - T_{\text{Cold}}^4 \sim 4\bar{T}^3 \Delta T \]
• Joint resistance at base
• Joint resistance at floating end
• Absolute thermometer errors

\[
\frac{\dot{Q}_H - \dot{Q}_{TL} - \dot{Q}_{HL} - \dot{Q}_R}{A} = \kappa(\bar{T}) \frac{(T_F - \delta T_F) - (T_B - \delta T_B) + \Delta T_F + \Delta T_B}{L}
\]
Our Test Configuration

- Based on approach described in 1973 Moore, Williams and Graves RSI paper
- Guard surrounds sample: Controlling $T_{\text{Guard Top}} = T_{\text{Sample Top}}$ reduces sample heat radiation
- “Fiberfrax” insulation eliminates remaining sample radiation
- Intermediate thermometers eliminate joint resistance effect
- Optimizing sample heater and leads minimizes ohmic heating in leads
- Lead heat-sinking minimizes lead heat conduction
Instrumentation

- **Thermometers**
 - LakeShore Cryotronics SD-package Cernox™ sensors
 - Calibrated (resistance vs. T) from 1 to 325 K

- **Heaters**
 - Sample heater is 10 KΩ metal-film resistor
 - Leads: size, material chosen to give round-trip resistance less than ~10 Ω inside guard
 - Base and guard heaters: 50 Ω
 - made by winding stainless steel wire around flange
 - we don’t measure the power for these heaters

- **Temperature readout/control boxes**
 - Cryogenic Control Systems Cryocon Model 32B Controller

- **Heater voltage and current readout**
 - Keithley Model 2000 6.5-digit multi-meters
Data Acquisition and Analysis

- For each value of \(\bar{T} = \frac{(T_{\text{Sample}} + T_{\text{Base}})}{2} \):
 - Perform 4 different steady-state ”balances”
 - For each balance, control \(T_{\text{guard}} = T_{\text{Sample}} > T_{\text{Base}} \)
 - Measure \(\Delta T = T_{\text{Far}} - T_{\text{Near}} \)
 - Measure \(\dot{Q} = \) sample control power

\[
\kappa(\bar{T}) = \frac{L}{A} \frac{d\dot{Q}}{d\Delta T}
\]

- To first order, differential measurement eliminates effect of absolute temperature errors
 - \(\frac{d\dot{Q}}{d\Delta T} \) is more accurate than any single \(\frac{\dot{Q}}{\Delta T} \) value

- Least-squares fit of 4 different \(\Delta T \) values provides statistical uncertainty in \(\frac{d\dot{Q}}{d\Delta T} \)
Effect of Cal. Curve “Scatter”

- Thermometer R vs. T calibrations have “scatter” due to measurement uncertainty
- Assume that “true” $R(T)$ is a smooth function approximated by a smoothing fit
 - LakeShore Cryotronics provides smoothing Chebyshev Polynomial fits
 - We performed cubic spline smoothing fit on a cal. curve
- Our readout box uses cubic spline interpolation to get T from R
 - Interpolation forces curve to go through every “scattered” point
 - Causes local dR/dT errors relative to slope of “true” smooth curve
 - A local error in dR/dT results in a proportional local error in κ
Evaluation of Cal. Curve Slope

- Graphed slope difference between spline-smoothed curve and spline interpolations:
 - Blue curve: interpolation of raw calibration points
 - Red curve: interpolation of Chebychev fit points
- Above 6 K, raw points give max. slope error of 0.3% (mostly below 0.2%)
- Improvement is possible by loading Chebychev fit points into readout box
Sample/Guard Mismatch Error

- To first order, keeping \(T_{\text{Sample}} = T_{\text{Guard}} \) eliminates effect of sample-guard heat leaks
 - For small \(\Delta T \) values, \(T_{\text{Sample}} - T_{\text{Guard}} \) calibration curve mismatches are assumed constant for balances with a given \(\bar{T} \)
 - Constant mismatches result in constant sample-guard heat leak
 - This does not effect \(\frac{d\dot{Q}}{d\Delta T} \)

- However, Fiberfrax effective thermal conductivity has a strong \((T^3) \) temperature dependence

- We performed finite-element thermal model to evaluate second order effects in \(\frac{d\dot{Q}}{d\Delta T} \)
Mismatch Error for PVC Sample

- Worst-case error at 300 K

- PVC has very low $\kappa = 0.16 \text{ W/m/K}$ at 300 K

- Modeled error vs. sample diameter inside 32 mm guard

- It’s best to make sample diameter as large as practical

- This error is proportional to $1/\kappa$, so much lower for other materials
High Conductivity Samples

Cryogenics
and Fluids
Branch

- aluminum 1350
- AlBeMet: longitudinal direction
- AlBeMet: transverse direction
Medium Conductivity Samples

- aluminum nitride
- aluminum 6061-T6
Polymer Samples

Cryogenics and Fluids Branch

Epon 815 epoxy
Teflon sheet (rolled, longitudinal direction)
Torlon (extruded) NIST fit for bulk Teflon

\[\kappa (W/m/K) \]

Temperature (K)

\[0.10 \]
\[0.20 \]
\[0.30 \]
\[0.40 \]
\[0.50 \]
\[0.60 \]
\[0.70 \]
\[0.80 \]
\[0.90 \]
\[1.00 \]

\[5 \]
\[10 \]
\[15 \]
\[20 \]
\[25 \]
\[30 \]
\[35 \]
\[40 \]
\[45 \]
\[50 \]
\[55 \]
\[60 \]
\[65 \]
\[70 \]
\[75 \]
\[80 \]
\[85 \]
\[90 \]
\[95 \]
\[100 \]
\[105 \]
\[110 \]
\[115 \]
\[120 \]
\[125 \]
\[130 \]
\[135 \]
\[140 \]
\[145 \]
\[150 \]
\[155 \]
\[160 \]
\[165 \]
\[170 \]
\[175 \]
\[180 \]
\[185 \]
\[190 \]
\[195 \]
\[200 \]
Composite Samples

S-glass [(45, -45, 0)s layup, S2 glass in EX1522 epoxy matrix]

T300 [(45, 0, -45)2s layup, T300 carbon fiber with 5HS weave in RS-3C epoxy matrix]
Conclusions

• It’s not too difficult to perform high-precision thermal conductivity measurements between 4 K and room temperature

• NASA/GSFC’s cryogenics group is equipped to perform such measurements for customers at any NASA center

• Thanks to the James Webb Space Telescope program, which funded the development of the technique and facility