Cooling the Origins Space Telescope

M. DiPirro, E. Canavan, L. Fantano
NASA/Goddard Space Flight Center
What is OST?

- NASA Headquarters Astrophysics Division commissioned 4 studies for one possible flagship mission to launch in the 2030’s
 - Lynx (X-ray Surveyor)
 - LUVOIR (Large UV, Optical, and near InfraRed Observatory)
 - HabEx (Habitable Exoplanet mission)
 - Origins Space Telescope (OST) (Far IR Surveyor)
Why Do We need a 4.0 K Telescope?

• OST will cover the wavelength range from 6 µm to 600 µm
 – The goal is to be background limited – limited by the cosmos rather than self emission from the telescope
How Big is This Thing?

OST 9.1 m primary

JWST 6.7 m primary
One Question

• How can we do a 9 m diameter 4 K telescope when a 6.7 m 40 K telescope (JWST) was so difficult?
 – Cryocoolers are now more mature
 • Cryocoolers at low temperature have a huge advantage over radiative cooling at low T
 – OST has a longer wavelength so the optics are less challenging
 – Low temperature has advantages
 • Low thermal contraction with changing temperatures for one
 – The design is driven by cryo/thermal considerations
 – Cryogenics leads to solutions!!!
State of the Art for cooling

• ACTDP and follow up matured coolers from 3 different companies
• Approximately 10,000 W of input power per W of cooling power
• Space Cryocooler Reliability is Extremely High
 – From Ron Ross’s ongoing survey
Cooling Power Vs. T

Heat lift at all stages normalized to cold stage to determine specific power.
Staged Cooling

• Utilize staged cooling to go from 300 to 0.05 K
 – Start with radiative cooling of the sunshield
 – Use 3 stages of cryocooler cooling
 – Finish with a subKelvin cooler to provide 50 mK
Rough calculation of the heat absorbed by the 4 K cryocooler stage is broken down as follows:

- Telescope: radiation: 55 mW, conduction from structure 20 mW, conduction from harnesses 30 mW
- Instrument dissipation: Maximum 100 mW mainly from low temperature preamplifiers

Will use eight 50 mW cryocoolers in parallel which provides redundancy, 100% margin on the expected cooling load, and keeps size close to current technology
Sunshield Principle

- Radiate horizontally, block radiation perpendicular
- Practical Considerations
 - Solar pressure imbalance
 - Deployment
 - The Sun, Earth, and Moon do not stay in one place
Field of Regard adds to shield size
OST Pitch=+5°/-45°, Roll = ± 5°,
Yaw = 360°
Solar Pressure

• Ideally the center of solar pressure (~9 μPa) and center of mass are in the same place
• Any offset must be overcome with momentum wheels and propulsion
 – Aside from mass, frequent propulsive maneuvers disrupt observing time
• [Two Cases]
Solar Torque - Two Cases
Cryocooler Considerations

• Staged heat extraction
• Vibration issues
 – Not so much for image stabilization as for microphonics on detectors
• Packaging and distributing cooling
• 50 mW cooling at 4 K plus 20 K and 70 K cooling for 500 W of input power
Sub-Kelvin Cooling

- Instruments whose detectors require cooling to less than 1 K will be sized to accommodate a provisional sub-Kelvin cooler. Such a cooler is currently at TRL4 and will be at TRL6 by the end of the current SAT (end of 2019)
 - Up to 5 µW continuous cooling at 50 mK (max duty cycle)
 - Up to TBD mW cooling at ~1K
 - Heat rejection to 4 K
 - 6 mW (at max duty cycle), 3 mW at min duty cycle
 - Magnetic shielding to provide < 1µT at the boundary of the cooler
 - Mass ~ 21 kg
 - Volume (see graphic)
Multi-Stage ADR Sub-Kelvin Cooling

50 mK interface

255 mm

~ 1K interface

4K Interface

Superconducting Nb Shield
Summary and Conclusions

• The Origins Space Telescope is being studied as a flagship class astrophysics mission for the 2030’s
 – 9.1 m diameter primary operating at 4 K
 • Cooling is achieved by proper staging of radiative coolers (sunshields), mechanical cryocoolers
 – 4 K and lower instruments
 • 3 instruments require subKelvin (50 mK) temperatures which could be provided by new continuous adiabatic demagnetization refrigerator