Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

Shivanjli Sharma
NASA Ames Research Center

John Fergus
Human Solutions Inc

Aviation 2017, June 5-9, 2017
Integrated Arrival, Departure, and Surface (IADS) Operations

Airspace Technology Demonstration 2 (ATD-2)
Integrated Arrival, Departure, and Surface (IADS) Operations
Integrated Arrival, Departure, and Surface (IADS) Operations
Overview

• Airspace Technology Demonstration 2 (ATD-2) Background

• Motivation for real time monitoring tool and analysis and method of developing requirements

• Description of data sources

• User interface and initial metrics

• Next steps
Overview

- Airspace Technology Demonstration 2 (ATD-2) Background
 - Motivation for real time monitoring tool and analysis and method of developing requirements
 - Description of data sources
 - User interface and initial metrics
 - Next steps
Contributing Technologies to ATD-2

Traffic Flow Management System (TFMS)
Decision support system for planning and mitigating demand-capacity imbalances in the NAS.

Time-Based Flow Management (TBFM)
Decision support system for metering based on time to optimize the flow of aircraft.

Terminal Flight Data Management (TFDM)
A new decision support system for airport surface management and ATC tower functions.

Precision Departure Release Capability (PDRC)
Overview

- ATD-2 Background

- **Motivation for real time monitoring tool and analysis and method of developing requirements**

 - Description of data sources

 - User interface and initial metrics

 - Next steps
IADS Data Exchange and Integration

Airline Operations
- Runway Utilization
- APREQs/CFRs
- Runway Assignments
- Flow Direction

ARTCC
- Airline Operations
- Ramp Controllers
- Data Exchange & Integration

Airport Operations
- Grounds Stops
- Runway Closures
- MIT restrictions
- EDCTs

TRACON
- Dep Fix Closures
- Flight Cancellations

ATCT
- Gate Conflicts
- Ramp Closures
- Long on Board
- Data quality updates
Development of Real Time Dashboard

Initially developed as a researcher tool

Prototype development based on S-CDM and TFDM requirements

Held a series of nine user sessions with operational personnel from the Tower, Ramp, Center, and airport operations
Overview

- ATD-2 Background

- Motivation for real time monitoring tool and analysis and method of developing requirements

- Description of data sources

- User interface and initial metrics

- Next steps
ATD-2 Logical Data Interfaces

TFDM SWIM
TFMS SWIM
TBFM SWIM
Surface SWIM
Operational TBFM IDAC
R-TBFM CAP/SWIM
R-TBFM IDAC/WSRT
AAL Flight Hub
AAL Surface Surveillance
Commercial Flight Service
NTML/OIS Operational info

Data Fusion and Mediation (Fuser)

ATD-2 System Processing

Real Time Dashboard
General Functionality

- Situational Awareness
- Monitoring Metrics
- Benefits Metrics
- Data Fidelity
General Functionality

Configuration and Flow Information

Ramp Status

Metering Mode

Situational Awareness

Monitoring Metrics

Benefits Metrics

Data Fidelity
General Functionality

Situational Awareness

Monitoring Metrics

Benefits Metrics

Data Fidelity

Throughput
- Predicted and actual runway capacity rates
- Delay values
- Arrival and Departure Taxi Time
- Excess Queue Time
General Functionality

- Situational Awareness
- Monitoring Metrics
- Benefits Metrics
- Data Fidelity

- CO₂ Savings
- Monetary Benefits
General Functionality

- Situational Awareness
- Monitoring Metrics
- Benefits Metrics
- Data Fidelity

Fidelity of incoming data feeds
System wide data deterioration
Overview

• ATD-2 Background

• Motivation for real time monitoring tool and analysis and method of developing requirements

• Description of data sources

• User interface and initial metrics

• Next steps
Current dashboard features both vertical and horizontal display capability.

- Feedback button with a link to an online form.
- Consistent configuration information and other icons across the system.
- Pull down menu with quick look display and in depth metrics.
Specific metrics will show across the last 15 minutes, the last rolling hour, and the last cardinal hour.
Dashboard Pull Down Menu Metrics
Overview

- ATD-2 Background

- Motivation for real time monitoring tool and analysis and method of developing requirements

- Description of data sources

- User interface and initial metrics

- Next steps
• Complete requirements for the real time dashboard leading up to Phase I go live date during which a version will be available to center, tower, and ramp controllers

• Constant iteration with operational users on the metric definitions, graphical views, and numerical information conveyed

• Refine requirements for additional features and develop new metrics based on input from operational users focused on predicative information that provides information to mitigate demand capacity imbalances
Backup material
Phase 1 Demonstration Goals

- Evaluate the Baseline IADS capability
- Enhance American Airlines CLT “departure sequencing” procedure with ATD-2 surface tactical metering
- Demonstrate improved compliance for a significant percentage of tactical TMI
- Mature strategic Surface CDM capability via operational use, analysis, and feedback
- Reduce ATCT workload by replacing paper strips with EFD

Interfaces to external systems via SWIM plus ATD-2 SWIM extensions

= IADS user interface
Surface Metering Process Flow Diagram

1. Generate Demand and Capacity Predictions

 - ATC/TMC Runway Utilization Intent
 - TRACON Controller Runway Intent
 - Highly accurate TBFM de-conflicted ON Time estimates
 - TFM SWIM ETAs
 - TMIs, Controlled Take Off Times (CTOT)
 - Carrier provided EOBTs
 - Tactical Airline Intent (ramp controller)

 IADS Automation Assisted Capacity Predictions

 - Surface modeling logic
 - Earliest IN time estimate
 - Earliest OFF time estimate
 - Latest OUT estimate
 - Pushback duration model
 - Ramp and AMA taxi time
 - Hovering logic
 - Scheduling logic:
 - Converging runways
 - Flight spacing requirements
 - Dual use runways
 - Runway crossing delays
 - Departure fix separation
 - Use of flight state

2. Monitor Surface Demand Capacity Imbalances

 Runway Delay
 \[\text{Time} \]
 - Runway Start
 - Target Delay
 - Metering Start
 - Metering Stop

3. If Surface Metering, Go to Step

4. Honor TOBT and TMAT advisories

5. Evaluate Metering Effectiveness

 - TOBT Advisory: 6 min
 - TMAT Advisory

 - Flight AAL705 A321 E
 - Flight BOBZY-SFO
 - Time 9 18C
 - Time P1856
IADS Tactical Departure Scheduling

APREQ/CFR departures merging into overhead streams

Flights subject to EDCTs due to downstream flow constraints

IDAC-style scheduling between IADS at CLT and TBFM at ZDC

Washington ARTCC (ZDC)
Concept Overview – Users

Overview video online at: http://aviationsystemsdivision.arc.nasa.gov/research/tactical/atd2.shtml
General Functionality

<table>
<thead>
<tr>
<th>Health/Situational Awareness</th>
<th>Monitoring Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration and Flow Information</td>
<td>Throughput</td>
</tr>
<tr>
<td>Ramp Status</td>
<td>Predicted and actual runway capacity rates</td>
</tr>
<tr>
<td>Metering Mode</td>
<td>Delay values</td>
</tr>
<tr>
<td></td>
<td>Arrival and Departure Taxi Time</td>
</tr>
<tr>
<td></td>
<td>Queue length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefits Metrics</th>
<th>Data Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Savings</td>
<td>Fidelity of incoming data feeds</td>
</tr>
<tr>
<td>Monetary Benefits</td>
<td></td>
</tr>
</tbody>
</table>