Development of stable, low resistance solder joints for space-flight HTS lead assemblies

Edgar R. Canavan¹, Meng Chiao², Lyudmyla Panashchenko¹, and Michael Sampson³

¹ NASA – Goddard Space Flight Center
² Alcyon Technical Services, LLC
³ SGT, Inc
Soft X-ray Spectrometer used a microcalorimeter array operating at 50 mK

SXS Thermal System:
- (2x) 2 stage Stirling coolers
- JT cooler (4.5 K)
- 40 l LHe tank (1.2 K)
- 3 stage ADR (50 mK)

HTS leads for ADR magnet current (2 A) needed to meet stringent parasitic heat load requirements
- HTS allocation: 10 µW @ 1.2 K; 670 µW @ 4.5 K

17 February 2016: Hitomi launched; SXS performs flawlessly
Background: XARM/RESOLVE

• In first few weeks, SXS demonstrated unprecedented resolution & discovered important new results
• 26 March, 2016: Attitude control system incident disables spacecraft
• 2017 — Start recovery mission
 – RESOLVE instrument – identical to SXS
 – Rapid turn around (2019 delivery to JAXA)
 – “build to print” with very few exceptions
RESOLVE HTS Lead Assemblies — Approach

- Physical structure identical to Astro-H

Solder pads: 100 µm cu /immersion Ag

1 mm Ag5%Au coated REBCO tape

Heat sink at JT shield

Composite support structure

Cold end transition board

Bolted joint — transition to ADR magnet leads

Connector — transition to standard harness

Warm end transition board
RESOLVE HTS Lead Assemblies – Changes

- Changes driven by issues encountered in Astro-H
 - I_c degradation, esp. in humid environment
 - SXS: REBCO 2G conductor, Ag/Au coated, slit to 1 mm after
 - Concern over lateral H2O & CO2 transport from exposed edges
 - RESOLVE: same conductor, coated after slitting
 - Solder joint degradation
 - SXS: measurements showed $R \propto \log(t)$ at ambient T
 - Slow consumption of 2 µm AgAu layer by In3%Ag solder
 - RESOLVE: 20 µm Cu plating over HTS at solder joints
 - Variability of void density & joint R

![Graph showing resistance over time](image)
Updates to HTS/PCB solder process

• Prototype solder rig
 – Motivation: tight control of process parameters
 – Ball joint for uniform force
 – Diode for accurate temperature control
 – Wrapped tip heater uniform heating
 – Fine position adjustment
 – Accurate control of force
 – Typical parameters (for In48%Sn):
 • Apply 10 N (80 mm² area)
 • Controller on; set point = 150 C
 • Wait 30 s after T = set point; controller off
 • When T < 100 C, remove force

• Production solder rig
 – Miniaturized to fit flight assemblies
Solder Tests – Materials

• Test boards
 – Solder pads similar to flight boards (2 x 40 mm)
 – Separate voltage tap points
 – 16 joints / board
 – Plating types:
 • Bare copper
 • Immersion tin
 • Electroless Ni/immersion gold

• Solder
 – In48%Sn (m.p.118 C, eutectic)
 – 1 mm preforms
Measurements and Early Results

• X-ray images to determine void fraction, wetting
• Joint resistances at 77 K
• Joint R vs T (3 K – 300 K)
• Early development test
 – Varied T_{solder} 150 – 165 K, Force 5 – 20 N, hold time 30 – 90 s
 – no obvious patterns in x-ray images or $R(77\text{ K})$
• Cycled 20 x (300 K \rightarrow 77 K); no change in any $R(77\text{ K})$
• Comparison of surface treatment in process
 – Best results so far with manual pre-tinning of solder pads
Current Transfer Length

• Serendipitous measurement:
 – \(x \) = HTS end to voltage tap distance
 – In early boards, \(x \) varied
 – Measure joint \(R \) at 77K
 – \(dR/dx \) = trace resistivity = 9.4 \(\mu \Omega/mm \)
 – AstroH samples: trace resistivity = 8 \(\mu \Omega/mm \)
 – Intercept = average current transfer length, \(\lambda = 0.43 \) mm
 – In Astro-H samples, \(\lambda = 2 - 4 \) mm

• For subsequent boards, \(x = 0 \)
Low Temperature Resistance

- Measured R vs T (3 – 300 K)
 - Plateau $5 \text{ K} < T < 16 \text{ K}$
 - $R \approx 0$ for $T \lesssim 5 \text{ K}$ ($T_c \text{ InSn 7.1 – 7.5 K}$)

- Normalized by mean (8 – 16 K)
 - Still ~ 2 x variation at 70 K \Rightarrow not a simple geometric effect

- Measure I-V at 10 K
 - I up to full operating current (2A)
 - Linear \Rightarrow ohmic behavior
 - Derived R matches those measured at low I
Distribution of Joint Resistances at 77 K

- Allows convenient comparison
- Astro-H
 - Test board & prototype measurements
 - Flight units (from post-vibe functional cool-down)
- 4 recent boards produced with same protocol

Results
- Values not directly comparable, but distributions are
- Astro-H measurements all had wide distribution
- Boards produced under new protocol show much tighter distribution
SEM/EDS of Cross-Sections

- EDS
 - Provides map of joint composition
 - Shows formation of inter-metallics at boundaries, largely unreacted solder in center
- Vianco, et al.:
 - CuIn growth rate follows
 \[y = A t^n e^{Q/RT} \]
 - Predicts \(\Delta y \approx 2.5 \mu m \) in 4 yr
 ➔ will maintain compliant InSn layer
Conclusions

• RESOLVE: Rapid rebuild of Soft X-ray Spectrometer
• RESOLVE HTS lead assemblies to “build to print” except
 – Improved HTS material
 – New solder joint material & process
 • Plating protects Au layer from slow consumption by solder
 • New rig gives tight control of process parameters
• Solder process qualification tests
 – Good wetting and void levels (x-ray image)
 – Acceptable intermetallic layers at boundary
 – Ohmic behavior to full operating current
 – Excellent sample-to-sample variation in 77 K resistance
• Path forward
 – I-V testing to 5 A in prototype
 – Environmental degradation testing of joints an HTS tape