PERFORMANCE EVALUATION OF THE INTERNATIONAL SPACE STATION FLOW BOILING AND CONDENSATION EXPERIMENT (FBCE) TEST FACILITY

Mohammad Hasan\(^1\), R. Balasubramaniam\(^1\), Henry Nahra\(^1\), Jeff Mackey\(^2\), Nancy Hall\(^1\), Bruce Frankenfield\(^1\), George Harpster\(^1\), Rochelle May\(^1\), Issam Mudawar\(^3\), Chirag R. Kharagante\(^3\), Lucas E. O’Neill\(^3\), Michal Talmor\(^4\)

\(^1\)NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, \(^2\)Vantage Partners LLC, 3000 Aerospace Parkway, Brookpark 44142, \(^3\)Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTFPL), 585 Purdue Mall, West Lafayette, IN47907, U.S.A, \(^4\)Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

Key objectives are:
1) Obtain flow boiling database in long-duration microgravity environment
2) Obtain flow condensation database in long-duration microgravity environment
3) Develop experimentally validated, mechanistic model for microgravity flow boiling Critical Heat Flux (CHF) and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent CHF
4) Develop experimentally validated, mechanistic model for microgravity annular condensation and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent annular condensation; also develop correlations for other condensation regimes in microgravity

Applications include:
1) Rankine Cycle Power Conversion System for Space
2) Two Phase Flow Thermal Control Systems and Advanced Life Support Systems
3) Gravity Insensitive Vapor Compression Heat Pump for Future Space Vehicles and Planetary Bases
4) Cryogenic Liquid Storage and Transfer
Flow Boiling and Condensation Fluid Systems

Flow Boiling and Condensation Experiment

ISS ITCS

DC

Flow Boiling Module FBM

CM-HT

Condensation Module for Visualization – CM-FV

Condenser

Accumulator

Degassing Contactor

Coriolis Flow Meter

Filter

Gear Pump

VES

Electrical Heater

DC
Top Level Science Requirements and Constraints

Requirements - Fluid System
- Deliver flow rates between 2 and 14 g/s of nPFH for Condensation Experiments and 2 to 40 g/s for Flow Boiling Experiments
- Deliver the required power up to 1550 W to the fluid
- Deliver the required system pressure between 110 and 170 kPa
- Volume increase is accommodated with an accumulator
- Accumulator is used to set the system’s pressure
- Deliver the required thermodynamic conditions of the fluid at the entrance of the test modules (subcooled, saturated and two-phase mixture)
- Provide the fluid cooling function

Constraints
- Limitation on the available power (1550 W total available for heating)
- ITCS cooling water flow rate up ~50 g/s to and returning stream temperature requirement of 40-49 °C
- Volume constraint 91.44x121.92x48.28 cm³ (36x48x19 in³)
- Mass constraint (~200 kg max)
Flow Boiling and Condensation Test Modules

- **Flow Boiling Module**
 - Subcooled, saturated and 2-phase Inlet condition at:
 - Mass Flow Rate 2.5 to 40 g/s
 - Heat Flux < 60 W/cm²

- **Condensation Module – Flow Visualization**
 - Saturated vapor and two-phase Inlet condition
 - Mass Flow Rate 2 to 14 g/s

- **Condensation Module – Heat Transfer**
 - Saturated vapor and two-phase Inlet condition
 - Mass Flow Rate 2 to 14 g/s

*Science Requirements Document for FBCE, March, 2013
Science Concept Review Presentation, December 2011*
Flow Boiling and Condensation Experiment

FBCE Fluid System (FS) Modules

Fluid System Module
- Consists of:
 - Pump
 - Filter
 - Coriolis flow meter
 - Degassing membrane contactor
 - Condenser
 - Accumulator

Bulk Heater Module
- Consists of:
 - Bulk Heater
 - Electronics and Control
Flow Boiling and Condensation Experiment

FBCE Brassboard Flow Loop and Instrumentation

Thermal safety switch: Shuts heater off if T>47 C

Thermal safety switch: Shuts heater off if T>104 C

Controls heater temperature

PA Air pressure on air side of accumulator
P Pressure measurement
T Temperature measurement
FFC Flow rate of FC
Fw Flow rate of water
Power Power input measurement
AT Accumulator Travel
DP Differential Pressure across the pump
Flow Boiling and Condensation Experiment

CM-FV

High Speed Cameras

Data Acquisition and Control

nPFH Module

Cooling Module

Bulk Heater Module

High Speed Video Recording and Observation
Brassboard Bulk Heater can operate at constant or cyclic power mode for the entire power range (0-1550 W)
Flight Bulk Heater can operate at constant power only for selected power ranges

Constant Power – Variable 28V Heater

- 50-200 Watts
- 450-650 Watts
- 900-1100 Watts
- 1350-1550 Watts

For cyclic heater operation mode and two phase inlet conditions into the test modules (FBM, CM-HT, CM-FV), we need to know the average power input to the bulk heater:

- Needed for accurate calculation of the thermodynamic quality
Heater Power Operation Modes
• Constant power mode operation
• Switching power mode operation and set point control
• Experiments have been performed to assess the calculated average power as a function of sampling frequency
• Average power is compared with the constant power corresponding to the same experimental condition (flow rates, pressure, heater temperature)

1. Set the FC-72 flow rate, water flow rate (test module) and water flow rate (condenser)
2. Set the bulk heater at a specified power
3. Determine steady state bulk heater metal temperature
4. Set the bulk heater set point temperature 1°C above the metal temperature determined above
5. Set the bulk heater at the maximum power, record data at specified sample rates (HZ)
6. Determine average power by integrating on-off power profile
Flow Boiling and Condensation Experiment

Bulk Heater Performance Study

<table>
<thead>
<tr>
<th>Date</th>
<th>Case #</th>
<th>Power (W)</th>
<th>Peak Power (W)</th>
<th>BHT Set Point (°C)</th>
<th>BHT Metal Temperature (°C)</th>
<th>Frequency (Hz)</th>
<th>Integrated Power (W)</th>
<th>% Deviation from Constant Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/14/2016</td>
<td>3</td>
<td>448</td>
<td>648</td>
<td>70</td>
<td>69.3</td>
<td>1</td>
<td>447.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>648</td>
<td>70</td>
<td>69.9</td>
<td>1</td>
<td>444.5</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>648</td>
<td>70</td>
<td>69.9</td>
<td>5</td>
<td>445.7</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>648</td>
<td>70</td>
<td>69.9</td>
<td>10</td>
<td>451.3</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>9/15/2016</td>
<td>3</td>
<td>648</td>
<td>70</td>
<td>69.9</td>
<td>25</td>
<td>454.3</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>648</td>
<td>70</td>
<td>69.9</td>
<td>50</td>
<td>455.8</td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1002</td>
<td>76</td>
<td>76</td>
<td>1</td>
<td>1003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1095</td>
<td>77</td>
<td>76.3</td>
<td>1</td>
<td>1039.7</td>
<td>3.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1095</td>
<td>77</td>
<td>76.2</td>
<td>5</td>
<td>1076</td>
<td>7.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1095</td>
<td>77</td>
<td>76.3</td>
<td>10</td>
<td>1083</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1095</td>
<td>77</td>
<td>76.3</td>
<td>25</td>
<td>1087.2</td>
<td>8.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1095</td>
<td>77</td>
<td>76.3</td>
<td>50</td>
<td>1067.2</td>
<td>6.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1435</td>
<td>86</td>
<td>86</td>
<td>1</td>
<td>1436</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1528</td>
<td>87.5</td>
<td>86</td>
<td>1</td>
<td>1490.1</td>
<td>3.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1528</td>
<td>87.5</td>
<td>86</td>
<td>5</td>
<td>1520.9</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1528</td>
<td>87.5</td>
<td>86</td>
<td>10</td>
<td>1513.9</td>
<td>5.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1528</td>
<td>87.5</td>
<td>86</td>
<td>25</td>
<td>1517.2</td>
<td>5.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1528</td>
<td>87.5</td>
<td>86</td>
<td>50</td>
<td>1517</td>
<td>5.64</td>
<td></td>
</tr>
</tbody>
</table>
The larger the difference between the peak set power and the constant power, the smaller the error in power integration.

Attributed to high periodicity in power cycling exhibited in large amplitude power oscillations.
CM-HT was tested in both horizontal and vertical orientations for FC-72 flow rates from 2 to 12 g/s and cooling water flow rate from 10 to 30 g/s.

- Saturated to slightly superheated vapor at the inlet to the test module (All vapor inlet condition was determined by comparing vapor inlet temperature with the saturation temperature and was verified by visual observation).
Tests were conducted in the following two ways

- Accumulator pressure set to a desired value at isothermal conditions and the gas-side vent valve closed. CM-HT module inlet pressure varies with FC-72 flow rate.

- Accumulator pressure adjusted during the tests to maintain a constant inlet pressure to the CM-HT module for all flow rates.
We conducted the tests with FC-72 flow rate varied from 2 to 12 g/s.

- Accumulator pressure set to 14.5 psia and vent valve closed. The module inlet pressure varied from 18.3 to 21.9 psia.
- Accumulator pressure set to 18.2 psia and vent valve closed. Module inlet pressure varied from 22.6 to 25.3 psia.

- Accumulator pressure adjusted by venting or pumping air.
- Module inlet pressure maintained at 19 psia. The accumulator pressure adjusted from 19.1 to 15.2 psia (lowest accumulator pressure slightly above ambient).
- Module inlet pressure maintained at 24 psia. The accumulator pressure adjusted from 24.1 to 21.9 psia (max accumulator pressure limited by relief valve pressure)
CM-HT Testing

CM-HT Axial Temperature Distribution

Vertical orientation: FC-72 flow rate = 10 g/s,
Module water flow rate = 10 g/s, Condenser water flow rate = 10 g/s
Module inlet pressure = 24.4 psia
Horizontal orientation: FC-72 flow rate = 10 g/s,
Module water flow rate = 10 g/s, Condenser water flow rate = 20 g/s
Module inlet pressure = 24 psia
CM-HT Axial Temperature Distribution

Vertical orientation: FC-72 flow rate = 4 g/s, Module water flow rate = 10 g/s, Condenser water flow rate = 20 g/s Module inlet pressure = 22.6 psia
Horizontal orientation: FC-72 flow rate = 4 g/s,
Module water flow rate = 10 g/s, Condenser water flow rate = 20 g/s
Module inlet pressure = 21.3 psia
For 4 g/s FC flow rate, vertical downflow tests exhibited axi-symmetric surface temperatures compared to horizontal flow tests.

For 10 g/s FC flow rate, vertical downflow and horizontal flow tests exhibited axi-symmetric surface temperatures.

Water temperature at 200 degrees circumferential location consistently higher than water temperature at 340 degrees for the selected cases.

Need to evaluate whether this might be due to differences in radial location of thermocouple.
Concluding Remarks

- Heater was demonstrated to operate in vertical and horizontal orientations and deliver the required test module inlet thermodynamic conditions.
- Heater performance testing resulted in an optimum hybrid constant/cyclic power operation for ISS operation.
- Average power for cyclic heater operation compared favorably (<2%) with corresponding constant power.
- Constant inlet pressure to CM-HT module for all FC-72 flow rates was demonstrated by adjusting the accumulator air-side pressure.
- CM-HT module axial and circumferential temperature distribution was assessed in both horizontal and vertical orientations for FC-72 flow rates from 2 to 12 g/s and cooling water flow rate from 10 to 30 g/s.
 - Temperature distributions appear to be physically reasonable.