A comparison of combustion dynamics for multiple 7-point lean direct injection combustor configurations

K. M. Tacina, Y.R. Hicks
NASA Glenn Research Center
Cleveland, Ohio

25 April 2017
Outline

• Background
• Experimental Setup
• Data Analysis Technique
• Results
• Summary and Future Work
Background: LDI

- Fuel lean: no rich front end
 - All *combustion* air enters through the dome

- Fuel is injected directly into the flame zone
 - Reduces problems with autoignition, flashback, and combustion instabilities

- Requires fine atomization and rapid, uniform fuel/air mixing

- Several small fuel/air mixers replace 1 conventionally-sized fuel/air mixer

- Many fuel/air mixing strategies
 - Size and number of fuel/air mixer
 - Swirler: radial, *axial*, or discrete jet
 - Venturi: placed downstream of swirler *simplex* or omitted
 - Fuel injector: type (*plain*, air assist, plain orifice) and flow number

Results are presented here for Swirl-Venturi LDI (SV-LDI)
SV-LDI

- Each swirl-venturi (SV) LDI fuel/air mixer consists of
 - an helical axial air swirler followed by a venturi.
 - a simplex fuel injector, inserted into the center of the air swirler, with its tip near the venturi throat.
- 7 fuel/air mixers, each nominally 1”, are arranged in an array.
- Design is similar to:
 - HSR and UEET SV-LDI designs
 - Woodward ERA N+2 SV-LDI designs
Background: Why do we care about combustion dynamics?

- Expected to be a problem with lean-burn combustor designs
- 7-point tends to be “noisy” compared to other LDI designs
 - Many points with peak-to-peak pressure fluctuations above 1 psi
- 7-point is used as a testbed for trying out active combustion control and passive damping techniques
Combustion and Dynamics Facility

Setup

Facility Setup
- Circular cross-section
- Diameter of 7.62-cm (3-in)
- Flow is downward
- Combustor section has 3 windows, each 5.8-cm × 6.1-cm (2.3-in × 2.4-in)

Inlet Conditions
- Temperature: 300-810 K (70-1000 F)
- Pressure: 101-517 kPa (15-75 psia, 1-5 atm)
- Air Flow: 0-0.35 kg/s (0-0.78 lbm/s)
- Fuel Flow: 0-0.9 kg/min (0-2 lbm/min)
Even this relatively simple LDI geometry produces a complex flowfield!

Setup

- 6-bladed, 60° helical air swirler
- Swirl number: 1.0
- Converging-diverging venturi
- Fuel/air mixer nominal size: 2.5-cm

- Simplex fuel injectors
- Flow number: 0.7
- Fuel injector tip near the venturi throat
Data Analysis Technique
Data Analysis Technique
Data Analysis Technique

![Graph showing data analysis technique](image)
Data Analysis Technique
Data Analysis Technique

![Normalized Power Spectrum](image)

- Peak at 2.046 psi² at 721±15 Hz
- Frequency range from 700 to 750 Hz
RMS: Cold Flow vs Reacting

![Graph showing RMS over bulk cold flow velocity with different symbols and colors for different conditions.](image-url)
RMS: Cold Flow vs Reacting

![Graph showing the relationship between bulk hot gas velocity and rms pressure with different markers for 45° outer, 60° center, and all 60° cases.](image-url)
High RMS vs Low RMS

Results
All 60 vs 60 center, 45 outer
Peak Frequencies

Results
Explanation of Frequencies

Results
Summary and Future Work

- Combustion dynamics at frequencies near 500 Hz, 700 Hz, and 1200 Hz
- These frequencies not depend strongly on the configuration
- The combustion dynamics near 700 Hz are likely a quarter-wave mode
- The source of the dynamics at 500 and 1200 Hz is undetermined
 - Note that 1200 – 700 = 500
- Future work:
 - Examine the frequency content of high speed flame luminosity measurements and compare with combustion dynamics from the pressure measurements
 - Implement closed-loop active combustion control using fuel modulation
 - Examine the effects of passive damping
Acknowledgements

This work was supported by NASA’s Transformational Tools and Technologies (T^3) project.
Spectrum: Nonreacting 7-Point 60° Swirler

Background