Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion

Dan Paxson
NASA John H. Glenn Research Center
Cleveland, OH

International Constant Volume Detonation Combustion Workshop
Poitiers, France
June 13-16, 2017
Acknowledgements

This effort summarized in this presentation contains contributions from (and would not have been possible without) the following individuals:

• Shaye Yungster - CFD
• Doug Perkins - Analysis
• Scott Jones - Analysis
• Kevin Dougherty - Experiments
• Robert Pelaez - Experiments
• Paul Litke - Experiments
• Andy Naples - Experiments
• Mark Wernet - PIV
• Trevor John - PIV
Pressure Gain Combustion (PGC) Defined:
A fundamentally unsteady process whereby gas expansion by heat release is constrained, causing a rise in stagnation pressure and allowing work extraction by expansion to the initial pressure.

Context:
Our Focus Is Not the Promotion of Any One PGC Mode
It Is the Practical Utilization of Confinement
Motivation

Pressure Gain Combustion Theoretically:
- Increases thermodynamic cycle efficiency
- Reduces SFC / fuel burn (NASA Objective)
- Reduces greenhouse gas emissions (NASA Objective)
- Competes with conventional cycle improvements

Engine Parameter Comparison

<table>
<thead>
<tr>
<th>Engine Parameter</th>
<th>Turbofan</th>
<th>Turbojet</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPR</td>
<td>30.00</td>
<td>8.00</td>
</tr>
<tr>
<td>η_c</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>η_t</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Mach Number</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>T_{amb} (R)</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>$T_{combustor exit}$ (R)</td>
<td>2968</td>
<td>2400</td>
</tr>
<tr>
<td>Burner Pressure Ratio</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>T_{sp} (lb$_f$-s/lb$_m$)</td>
<td>18.26</td>
<td>75.86</td>
</tr>
<tr>
<td>SFC (lb$_m$/hr/lb$_f$)</td>
<td>0.585</td>
<td>1.109</td>
</tr>
</tbody>
</table>

Low NOX Constraint on All Concepts

Turbine Compressor

$\Delta P > 0.0$, $P_4/P_3 > 1$

Equivalence:

- 6.0% increase in η_c
- 2.5% increase in η_t
- 1 compression stage

INNOVATION

<table>
<thead>
<tr>
<th>INNOVATION</th>
<th>TURBOFAN</th>
<th>TURBOJET</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPR</td>
<td>30.00</td>
<td>8.00</td>
</tr>
<tr>
<td>η_c</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>η_t</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Mach Number</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>T_{amb} (R)</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>$T_{combustor exit}$ (R)</td>
<td>2968</td>
<td>2400</td>
</tr>
<tr>
<td>Burner Pressure Ratio</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>T_{sp} (lb$_f$-s/lb$_m$)</td>
<td>18.26</td>
<td>75.86</td>
</tr>
<tr>
<td>SFC (lb$_m$/hr/lb$_f$)</td>
<td>0.585</td>
<td>1.109</td>
</tr>
</tbody>
</table>
Motivation

Resonant Pulse Combustor-RPC
(aka ‘Confined’ Volume Deflagration)

FEATURES:
• Self-sustained operation
 • No spark plugs
• Only one moving part
• Relatively low unsteadiness amplitudes
 • Lower thermal and mechanical stresses
 • Effluent easier to smooth
 • Fewer potential issues for downstream turbomachinery
• Readily operates with liquid fuels (gasoline, ethylene, kerosene)
• Effective lean operation (low T_{t4}’s) with bypass ejectors
• Unequivocally a pressure gain device
 • Only known PGC system to operate under static conditions

DRAWBACK
• Only Modest Pressure Gain is Possible
 • Confined (not constant) volume combustion

Practically: Features May Outweigh Drawback – Even Compared to Other PGC Approaches
Motivation

Resonant Pulse Combustion Basic Cycle
Experimental Investigations

Ejector Mixing and Pumping Optimization

Pressure Gain in a Shrouded Configuration

Closed Loop Operation in a Gas Turbine

• PR=1.037 @ TR=2.2
• rms p’/P=4.5% in the shroud
• Successful operation at 2 Atm. inlet pressure

All Work Done With COTS Hobby Scale Pulse Combustor (Pulsejet)
Experimental Investigations

Results:

- True closed loop operation @ SLS
 - All air supplied by compressor
- \((P_{\text{in}}/P_{\text{out}} - 1) = 3.5\% \at \frac{T_{\text{in}}}{T_{\text{out}}} = 2.2\)
- Sustained operation on liquid fuel
 - Limited only by COTS reed valve
- Successfully produced thrust
- Demonstrated Benefit
 - Turbine slows and stops with conventional combustor at same \(\frac{T_{\text{in}}}{T_{\text{out}}}\)
- -20 dB noise reduction across Turbine
- 4% rms \(p'/P_{\text{out}}\) at turbine inlet

Without Qualification…It Works!
Numerical Investigations
What Happens to RPC at Representative P_3, T_3?

Approach:
• Use in-house 2D axisymmetric CFD code
 • Turbulent
 • Contains detailed chemical kinetics
 • Adiabatic
 • Gaseous Jet-A fueled
 • Successfully applied to PDE, RDE, and SCRAM combustion
 • Pressure actuated, prescribed motion slide valve simulates reed
• Validate on atmospheric tests of experimental RPC
 • Compare thrust, mass flow rate, pressure traces, frequency
• Run at 10 Atm., 990 R inlet conditions
• Optimize for maximum pressure gain at T_{t4}/T_{t3}≈2.0
 • Fuel injector location
 • Inlet geometry
 • Combustion chamber size
 • Combustor length
 • Ejector/mixer parameters (length, position, diameter)
• Monitor emissions
 • Seek lowest index with largest pressure gain
• Seek minimum size

CFD as Predictive Design Tool
Numerical Investigations
Results To Date

- Emission Index < 10 g\textsubscript{NOX}/kg\textsubscript{fuel}
 - Lower pressure gain configurations showed values below 1.0!
- \((P_4/P_3 - 1) = 3.3\% @ T_4/T_3 = 2.4 \)
 - A large improvement considering \(T_3 = 990 \) R
- Relatively benign station 4 conditions
 - 7\% rms \(p'/P_4 \)
 - 23\% rms \(u'/u_4 \)
 - 1.7\% rms \(T'/T_4 \)

Inflow Vortex Motion is Key
Temperature contours (top half) and fuel mass fraction contours (bottom half) at various times during one cycle (\(\phi = 0.72 \)).

- Self-ignition via residual hot gas
- Rapid confined combustion
- Expansion/acceleration
- Refill
Ongoing and Future Directions

Alternative Valve Concepts

• Minimum length and diameter configuration
 • Computational
• Turbine interaction studies
 • Computational
• Active air valves
 • Still in planning stages
• High P_3, T_3 testing facilities
 • Still in planning stages

Life Extending Techniques for Existing Reed Valves

Active Fuel Modulation

AFRL/NASA - 2009
Concluding Remarks

Resonant Pulse Combustion (RPC):
• Represents a promising approach for achieving practical Pressure Gain Combustion (PGC)
• Has features which are well suited for gas turbine applications
 • Relatively low unsteadiness
 • Demonstrated approaches to achieving requisite overall lean operation
 • Few moving parts
 • Relatively low thermal and mechanical stresses
 • Self-sustaining
 • Low emissions potential
• Is a remarkably well developed concept
 • Liquid fueled operation
 • Demonstrated pressure gain
 • Demonstrated benefit to gas turbines
• Has potential for high P_3, T_3 operation
• Presents multiple opportunities for improvement and optimization that are achievable with current technology

RPC Could Be the Gateway to Making PGC Mainstream
END