Low-Reynolds Number Aerodynamics of an 8.9% Scale Semispan Swept Wing for Assessment of Icing Effects

Andy Broeren
NASA Glenn Research Center

Brian Woodard and Jeff Diebold
University of Illinois at Urbana-Champaign

Frédéric Moens
ONERA—The French Aerospace Lab

AIAA 9th ASE Conference Denver, CO June 5-9, 2017
Outline

• Introduction
• Objectives and Approach
• Experimental Methodology
• Model Mounting Evaluation
• Clean Wing Aerodynamics
• CFD Simulation Comparison
• Ice Roughness Simulation Comparison
• Summary
• Acknowledgements
Introduction

- Development and use of 3D icing simulation tools.
- Lack of ice accretion and aerodynamic data for large-scale, swept wing geometries.
- Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.
- Multi-faceted research effort called SUNSET II.
Introduction

Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.

• Low-Reynolds number \((Re \leq 2.4 \times 10^6)\) aerodynamic test campaigns.

• The artificial ice shapes were developed based upon a series of ice-accretion tests in the NASA Icing Research Tunnel.
 − High fidelity and low fidelity

• Higher-Reynolds number (up to \(Re \approx 12 \times 10^6\)) aerodynamic test campaigns.
Objectives and Approach

Objectives
• Perform experimental and computational assessment of clean-wing aerodynamics, model installation and simulation of small ice roughness.

Approach
• Perform aerodynamic testing with 8.9% scale semispan swept wing model of CRM65 at low-Reynolds number.
• Perform 3D RANS simulations of clean wing fully turbulent and with free transition.
• Parametric study of model-mounting configurations.
• Investigate techniques for simulating small ice roughness.
Common Research Model (CRM)

- Commercial transport class configuration.
- Contemporary transonic supercritical wing design.
- Publically available and otherwise unrestricted for world-wide distribution.
- A 65% scale CRM was selected as the full-scale, reference swept-wing geometry for this research.
- CRM65 size airplane is comparable to Boeing 757.
Experimental Methodology

- Aerodynamic testing performed at Wichita State University Beech Wind Tunnel.
- Test section size 7-ft x 10-ft.
- 8.9%-scale semispan model of CRM65 geometry.
- Reynolds numbers = 0.8, 1.6 and 2.4×10^6
- Corresponding Mach numbers = 0.09, 0.18 and 0.27.
- Measure surface pressure - C_P.
- Mini-tuft and surface-oil flow visualization.
Model Mounting Configurations

- Circular Splitter Plate
- Rectangular Splitter Plate
- Streamlined Shroud
- Wing
- Circular Shroud
- Seam for splitter plate removal
Model Mounting Configurations

- Effect of model mounting on aerodynamic performance at $Re = 2.4 \times 10^6$, $M = 0.27$.

![Graph showing CL and CD vs. angle of attack for different model configurations.](graphics)
Model Mounting Configurations

- Surface pressure distribution at $y/b = 0.44$, $\alpha = 13.2$ deg., $Re = 2.4 \times 10^6$, $M = 0.27$.

![Graph showing pressure distribution with different configurations]
Clean Model Aerodynamics

- Effect of Reynolds and Mach number on clean wing configuration.
Clean Model Aerodynamics

- Surface pressure distribution at $Re = 1.6 \times 10^6$, $M = 0.18$.

\[
\alpha = 9.0 \text{ deg.}
\]

\[
\alpha = 11.1 \text{ deg.}
\]
Clean Model Aerodynamics

- Mini-tuft and surface-oil flow visualization at $\alpha = 11.1$ deg., and $Re = 1.6 \times 10^6$, $M = 0.18$.
Clean Model Aerodynamics

- Surface-pressure distribution and mini-tuft flow visualization at $\alpha = 13.6$ deg., and $Re = 1.6 \times 10^6$, $M = 0.18$.

![Diagram showing pressure distribution and flow visualization](image-url)
Clean Model Aerodynamics

- Surface-pressure distribution and mini-tuft flow visualization at $\alpha = 14.1$ deg., and $Re = 1.6 \times 10^6$, $M = 0.18$.

$\alpha = 14.1$ deg.
Clean Model Aerodynamics

- Surface-pressure distribution animation at $Re = 1.6 \times 10^6$, $M = 0.18$.

\[\alpha = 9.0 \text{ deg.} \]
CFD Simulation Methodology

- CFD simulation included the wing and splitter plate, no shroud.
 - Test-section floor included as symmetry plane.
- Chimera overset grid based upon ONERA methodology.
 - Wing: \(\sim 9.4 \times 10^6 \) cells
 - Splitter: \(\sim 6.5 \times 10^6 \) cells
 - Collar grid: \(\sim 0.65 \times 10^6 \) cells
- ONERA elsA solver for 3D compressible RANS equations.
- One equation Spalart-Allmaras turbulence model.
- Free-transition model criteria based upon free-stream turbulence intensity of 0.11% \((N_T = 8) \) corresponding to WSU wind tunnel.
CFD Simulation Comparison

- Clean wing performance at $Re = 1.6 \times 10^6$, $M = 0.18$.

![Graph showing comparison between WSU Experiment, CFD Turbulent, and CFD Transition (N = 8).]
CFD Simulation Comparison

- Surface oil flow visualization and transition location at $\alpha = 0$ deg. and $Re = 1.6 \times 10^6$, $M = 0.18$.

![CFD Simulation Comparison Image]
CFD Simulation Comparison

- Surface pressure distribution at $\alpha = 13.1$ deg. and $Re = 1.6 \times 10^6$, $M = 0.18$.

![Graphs showing CFD simulation comparison with experiment data at y/b = 0.28 and y/b = 0.84.](image)
Roughness Simulation Methodology

- Full-span artificial ice shapes were bolted to the wing leading edge.
- Artificial ice shapes were made using rapid-prototype manufacturing (RPM).
- Small ice roughness was simulated with regular pattern of hemispheres in the RPM shape.
- Aerodynamic results were compared to carborundum grit of equivalent size applied to the clean leading edge.
Roughness Simulation Comparison

- Aerodynamic performance at $Re = 1.6 \times 10^6$, $M = 0.18$.

![Graph showing aerodynamic performance with different roughness conditions](image-url)
Summary

- Experimental and computational study of 8.9% scale CRM65 semispan wing at \(Re = 0.8, 1.6 \) and \(2.4 \times 10^6 \) and \(M = 0.09, 0.18 \) and \(0.27 \).
- Four different model mounting configurations were investigated.
 - Circular splitter plate and streamlined shroud selected for further work.
- A detailed study of clean wing aerodynamics was performed:
 - For all \(Re \) and \(M \) conditions, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow.
 - This behavior was captured for 3D RANS CFD simulations with free transition model, with opposite results for fully turbulent simulations.
- Artificial ice roughness simulated with hemispherical patterns in RPM shapes generated aerodynamic effects equivalent to similar size carborundum grit roughness.
 - Size of RPM-based hemispherical roughness limited to height = 0.010 inches due to manufacturing limitations.
Acknowledgements

Sponsor Organizations:
• NASA—Advanced Air Transport Technology Project
• FAA
• ONERA

Supporting Organizations:
• Boeing
• University of Illinois
• University of Virginia
• University of Washington

***Special thanks also to the WSU Beech Wind Tunnel staff and to William Yoshida at Univ. of Illinois for developing surface pressure contour plots.