Trade Study:
Storing NASA HDF5/netCDF-4 Data in the Amazon Cloud and Retrieving Data via Hyrax Server Data Server

Ted Habermann¹, James Gallagher², Aleksandar Jelenak¹
Nathan Potter², Joe Lee¹, Kent Yang¹

¹The HDF Group ²OPeNDAP, Inc.

This work was supported by NASA/GSFC under Raytheon Co. contract number NNG15HZ39C
Goals

• Study several approaches to storing and retrieving NASA HDF5 (& netCDF4) data using Amazon Web Services (AWS) Simple Storage Service (S3) and Hyrax server.

• Explore strategies for granulizing and aggregating data that optimize both performance and cost for data storage and retrieval.

• Develop a cloud cost model for the preferred data storage solution that accounts for different granulation and aggregation schemes as well as cost and performance trades.
Methodology

- Three architectures explored using proof-of-concept code
- Three sample NASA data collections
- Index files with dataset storage information
- HDF5 library, h5py Python, Hyrax
- Representative use cases with NASA data
- Analysis of performance, access and cost logs
Archit. #1: Baseline Hyrax Data Access
Archit. #2: Files With HTTP Range-Gets

* Index Location TBD
* Read metadata (DMR/DDS/DAS, coordinates?) from index.
* Read data from S3 object using HTTP range GET.
Archit. #3: HDF5 Datasets as S3 Objects

* Index Location TBD
* Read metadata (DMR/DDS/DAS, coordinates?) from index.
* Read data shard from S3 using simple GET.
Sample Data Collections in AWS S3

- NASA MERRA2 (7,466 HDF5/netCDF files; 231GB)
- NASA AIRSSTD3.006 2015 (365 HDF5 files; 122GB)
- Sample HDF5 (96 files; 125MB)
Index Files

- A catalog of file content and dataset byte storage information.
- One for each file in the data collections.
- Hyrax Dataset Metadata Response (DMR) XML used as the ST.
- HDF4 File Map XML used for HDF5 dataset storage information (chunk sizes and offsets).
- Prototyped HDF5 Library to provide this data storage information – tool reads and modifies DMR
Index File Content

<?xml version='1.0' encoding='UTF-8'?>
<Dataset xmlns="http://xml.opendap.org/ns/DAP/4.0#"
 xmlns:h4="http://www.hdfgroup.org/HDF4/XML/schema/HDF4map/1.0.1"
 dapVersion="4.0" dmrVersion="1.0">
 <Dimension name="Latitude" size="180"/>
 <Dimension name="Longitude" size="360"/>
 <Float32 name="ClrOLR_A">
 <Dim name="/Latitude"/>
 <Dim name="/Longitude"/>
 <h4:chunks deflate_level="2" compressionType="shuffle deflate">
 <h4:chunkDimensionSizes>180 360</h4:chunkDimensionSizes>
 <h4:byteStream nBytes="72049" md5="b707670ae423d0fda9fdb6f33e8f186c"
 chunkPositionInArray="[0,0]" offset="130440821"
 uuid="b0abe13e-4aab-47b3-b256-89d43380600e"/>
 </h4:chunks>
 </Float32>
</Dataset>
Using UUIDs as object identifiers seems like a good choice.

Analysis of the checksums identified identical chunks (same checksum) repeated in every file in a dataset. These chunks can account for a significant portion of the datasets (30-90%).

Storing these chunks once could decrease storage and access costs significantly.
Use Cases

CF responses: Access the CF-enabled DAP4 Hyrax DMR and Data responses.

Default responses: Access the default DAP4 Hyrax DMR and Data responses.

Timeseries request: one pixel MERRA2 files, Query: PRECCU[0:1:]*[1][1]

Timeseries request: one pixel AIRS files, Query: Temperature_A[0:1:]*[1][1][1]

CF responses (contiguous): Access the CF-enabled DAP4 DMR, Data responses, HDF5 w/ contiguous storage.

2/8 chunks spatial subset: AIRS files, Query: Temperature_A[0:1:*][13:1:15][40:1:45][175:1:195]

Decimated variable: AIRS files, Query: Temperature_A[0:1:*][0:8:23][0:15:179][0:15:359]

4/16 chunks spatial subset: MERRA2 files, Query: PRECCU[0:1:][160:1:200][245:1:295]

Decimated variable: MERRA files, Query: PRECCU[0:1:*][0:60:360][0:8:575][0:15:359]

Random spatial subset(10): MERRA2 files, Query: PRECCU[0:1:][160:1:199][245:1:294]

Random spatial subset(10): AIRS files, Query: Temperature_A[0:1:*][0:8:23][0:1:39][0:1:49]

Random spatial subset(all datasets): MERRA2 files, Query: PRECCU[0:1:][160:1:199][245:1:294]

Random spatial subset(all datasets): AIRS files, Query: Temperature_A[0:1:*][0:8:23][0:1:39][0:1:49]

Decimated variable(17): MERRA2 files, [Query](https://github.com/OPENDAP/cloudydap/wiki/Use-Case-Summary)

Decimated variable(30): AIRS files, [Query](https://github.com/OPENDAP/cloudydap/wiki/Use-Case-Summary)

All data: 100 MERRA2 files, Query: *none*

All data: 100 of the AIRS files, Query: *none*
Request Tracers

cloudydap={UseCase}_{Arch}_STARTED_{seconds-since-epoch}.h5 where:
• {UseCase} is the use case identifier, e.g. UC1 for the Use Case 1.
• {Arch} is the architecture identifier, e.g. A1CFT for Architecture #1 CF=True
• Hyrax server.seconds-since-epoch would be replaced with the output of a date +%s command (ex: 1485208202) which should be the same for every request in a particular run of a collection of the use cases.

UC1_A1CFT_STARTED_1485208202.h5
Performance / Costs

Architecture #1
DAP request = S3 request = HDF5 file

Architecture #2
Cache is not required
One DAP request = one or more S3 range gets / HDF5 dataset

Architecture #3
One DAP request = one or more S3 requests / HDF5 dataset
S3 Processing Times

Architecture 1 retrieves entire files – bigger files take longer

Architecture 2/3 retrieve chunks
small chunks are fast

User response times include connection initiation times in addition.
Range-gets vs. Objects
Performance Summary

C/F = Chunks / File = the ~number of chunks that can be retrieved in the same time as a complete file.

HTTP connection = ~225 ms
Cost Modelling

• Fixed costs
 – EC2 instances (Hyrax servers) ($$$$
 – Data / Metadata (?) in S3 ($$$$

• Dynamic costs
 – Number of Hyrax requests to S3 (¢
 – Outbound data ($$$
 – Cache type and size ($$$
 – Data flow from S3 to Hyrax server(s) ($$ if not in the same AWS region)
Cost Comparison

One month of EC2 m4.xlarge instance: $156
= 713 GB of storage

S3 Storage: $0.022/GB-month
S3 Request: $0.0000004

EFS cache: $0.3/GB-month
NFS on AWS

EBS cache: $0.1/GB-month
Local disk

~25% discount??
Architecture Comparison

<table>
<thead>
<tr>
<th></th>
<th>Architecture 1</th>
<th>Architecture 2</th>
<th>Architecture 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Faster for requests for large number of variables or entire file</td>
<td>Faster than A1 for requests accessing small number of variables.</td>
<td>Slower for requests for many variables or the entire granule.</td>
</tr>
<tr>
<td></td>
<td>Slower for requests for a small number of variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing Costs</td>
<td></td>
<td>Depends on processing time</td>
<td></td>
</tr>
<tr>
<td>Storage Costs</td>
<td>~Equal</td>
<td>Can be significantly lower depending on repetition of data values within the granules / dataset.</td>
<td></td>
</tr>
<tr>
<td>Original granule retrieval</td>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Data Migration to Cloud</td>
<td>Copy each file to a single S3 object</td>
<td></td>
<td>Shred each file into multiple S3 objects</td>
</tr>
<tr>
<td>Commercial Web Crawler Access (Googl eBot, etc.)</td>
<td>Potentially significant if crawlers require large amounts of information to move from S3 to the data server. This situation can be mitigated by limiting crawler access to just metadata held by the server.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommendations

• Integrate support for S3 access into the HDF5 Library
• Model current DAAC data use with detailed / consistent Hyrax logs
• Model and mitigate web crawler costs
• Develop an adaptable server: retrieval strategy depends on nature of request
• Refine the implementations of A1, 2 and 3 (parallel requests, reuse connections, ...)
• Explore deployment utilizing a serverless architecture
Acknowledgements

This work was supported by NASA contract number NNG15HZ39C. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA, OPeNDAP Inc., Raytheon or The HDF Group.