Introduction

This work presents heavy ion and proton test data for various trench-gate power metal-oxide-semiconductor field-effect transistors (MOSFETs) ([Table I]). Devices evaluated include the first (and only) radiation-hardened trench-gate power MOSFET, as well as non-hardened commercial and both in- and out-of-pulse automotive-grade MOSFETs. Typically, x-ray testing environments for single-event effects (SEE) in power MOSFETs are established using ions with atomic number (Z) > 25 and high linear energy transfer (LET) (>25 MeV·cm²/mg) energy deposits in silicon to a depth of several microns. It is impractical, however, to thoroughly evaluate non-hardened vertical trench-gate power MOSFETs with x-ray ion data related to high-reliability chamber and short-duration space missions such as CubeSats ([Table II]). Trench-gate power MOSFETs are evaluated in both catastrophic SEE and degradation due to localized ionizing dose effects from heavy ions ([Fig. 1]). Device commercial Si7414DN is explored in this work.

Test Methods

Part Preparation

In the case of acid-etching or manufacturer-supplied unlidded devices, the sample was placed on a 2.5-cm silicon substrate. Single-Event Testing

- Gate-source voltage (VGS) held at 0 V (off-state) for most cases
- Drain-source voltage (VDS) increased by 0.5% of rated VDS before each 10 MeV·cm²/mg increment (10%)
- Post-irradiation gate stress (PGS) test performed and BVGS ramped after each run
- Other optional measurements: Gate threshold voltage (VT), drain leakage current (IDSS) & VDS voltage drop curves

Failure Criteria

- Gate current (IG) exceeding manufacturer specification during beam-run or PGS test
- BVGS failed by manufacturer specification and sudden increase in IDSS after irradiation

Test Setup

- Heavy Ion Tests ([Figs. 3-5]):
 - Decapsulation via acid-etching or manufacturer-supplied unlidded.

Results: N-Type Commercial & Automotive

The Vishay Si7414DN commercial and SQS460DN automotive 60-V MOSFETs differed in susceptibility to single-event burnout (SEB) as a function of ion species & LET ([Fig. 3-9]; Table I). Discrete increases in ID were observed in both devices, with the Si7414DN exhibiting possible lateral behavior (see Fig 9). LET = 31 MeV·cm²/mg premonitors 200-MeV proton tests performed without sufficientcapacitance ([Fig. 10]; decomposition of two common opto- (Fig. 18) whose onset VDS corresponds to the heavy-ion threshold VDS for SEE, suggesting these may be questionable SEE events.

Discussion & Conclusions

Commercial, automotive, and radiation-hardened trench-gate vertical power MOSFETs were evaluated for SEE sensitivity. The single-event test environments for the commercial and automotive-grade devices is difficult to define due to the extent of the part-to-part variability. In some cases, a broad distribution may be present. A standard radiation-hardness assurance procedure typically is a derating factor (typically 0.75, per [10]) to the highest passing VDS of the sample that failed at the lowest VDS. This approach is likely inadequate given the extent of the part-to-part variability. For example, the data in Fig. 17 suggests NTF5116P, which can be operated safely up to 17 V, the application of a single-event test at one-sided tolerance limit (KTL) to these data results in 30 V, indicating a large sample size is needed to determine the distribution of failures.

Acknowledgment

This work was supported in part by the Electronics and Packaging Program (NSR2), the National Aeronautics and Space Administration, and the Army Research Office (ARO). In addition, we thank Michael Campola for his work on this project, Michelle Coachman for the work on the Striptape analysis, and the Aerospace Corp., for scheduling LBNL beam time for these tests.