Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

Co-authors: Sujay Kumar1, Jacqueline Le Moigne2, and Sreeja Nag2,3

1=NASA GSFC - Hydrological Sciences; 2=NASA GSFC - Software Engineering; 3=Bay Area Environmental Research Institute

Bart Forman

Assistant Professor, University of Maryland
The Deborah J. Goodings Professor of Global Sustainability
Department of Civil and Environmental Engineering

June 7th, 2017
Satellite-derived Snow “Information”
Satellite-derived Snow “Information”
Satellite-derived Snow “Information”

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Research Objectives

Science and mission planning questions:

1. What **observational records** are needed (in space and time) to maximize terrestrial snow experimental utility?

2. How might observations be **coordinated** (in space and time) to maximize this utility?

3. What is the **additional utility** associated with an additional observation?

4. How can future **mission costs be minimized** while ensuring Science requirements are fulfilled?
Research Objectives

Science and mission planning questions:

1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?

2. How might observations be coordinated (in space and time) to maximize this utility?

3. What is the additional utility associated with an additional observation?

4. How can future mission costs be minimized while ensuring Science requirements are fulfilled?
Science and mission planning questions:

1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
2. How might observations be coordinated (in space and time) to maximize this utility?
3. What is the additional utility associated with an additional observation?
4. How can future mission costs be minimized while ensuring Science requirements are fulfilled?
Research Objectives

Science and mission planning questions:

1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?
2. How might observations be coordinated (in space and time) to maximize this utility?
3. What is the additional utility associated with an additional observation?
4. How can future mission costs be minimized while ensuring Science requirements are fulfilled?
Observing System Simulation Experiment

Observation
Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Observing System Simulation Experiment

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Observing System Simulation Experiment

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Machine Learning
Emulators
Variability
Experiments

Conclusions
Observing System Simulation Experiment

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Observing System Simulation Experiment

Bart Forman

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Observing System Simulation Experiment

Observation Types

Objectives

OSSE

TAT-C

Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Machine Learning
Emulators
Variability
Experiments

Conclusions
Observing System Simulation Experiment

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
Observing System Simulation Experiment

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes Eulerian Grid
Single Platform Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions
TAT-C Orbital Simulator
TAT-C Orbital Simulator

Observation Types
Objectives
OSSE
TAT-C Hyperplanes
Eulerian Grid
Single Platform Constellation
Trade-off Space
Machine Learning Emulators
Variability Experiments
Conclusions
TAT-C Orbital Simulator
“Comb” Viewing \leftrightarrow Single Platform
“Comb” Viewing ↔ Constellation

ESC 2017
Ottawa, Canada

Bart Forman

Observation
Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Machine Learning
Emulators
Variability
Experiments
Conclusions
• Explore trade-off between engineering and science
 ▶ Field-of-View (FOV)?
 ▶ Platform altitude?
 ▶ Repeat cycle?
 ▶ Single platform vs. constellation?
 ▶ Orbital configuration(s)?

• How do we get the most scientific bang for our buck?
Machine Learning “Emulators”

Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space
Machine Learning
Emulators
Variability
Experiments
Conclusions

Physically-based Land Surface Model(s)

Xue and Forman, 2015
Remote Sensing of Environ.

Observation Operator
(Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)

Multi-frequency, Multi-polarization Training Targets

brightness temperature

36 GHz, V-pol
36 GHz, H-pol
18 GHz, V-pol
18 GHz, H-pol
10 GHz, V-pol
10 GHz, H-pol

atmosphere
T_2-meters
vegetation
T_{skin}
LAI
snow
SWE
$p(z)$
$T(z)$
SLWC
grain size
soil
T_{surf}
mobility

ESC 2017
Ottawa, Canada
Bart Forman
Machine Learning “Emulators”

- Observation Types
- Objectives
- OSSE
- TAT-C
- Hyperplanes
- Eulerian Grid
- Single Platform
- Constellation
- Trade-off Space
- Machine Learning
- Emulators
- Variability
- Experiments
- Conclusions

- Physically-based Land Surface Model(s)
- Observation Operator
 (Forman et al., 2013; Forman and Reichle, 2014; Forman and Xue, 2016)
- Multi-frequency, Multi-polarization Training Targets

- Xue and Forman, 2015
- Remote Sensing of Environ.
Observation Types
Objectives
OSSE
TAT-C
Hyperplanes
Eulerian Grid
Single Platform
Constellation
Trade-off Space

Machine Learning
Emulators
Variability
Experiments

Conclusions

Machine Learning “Emulators”

Xue and Forman, 2015
Remote Sensing of Environ.

Observation Operator
(Forman et al., 2013;
Forman and Reichle, 2014;
Forman and Xue, 2016)

Multi-frequency,
Multi-polarization
Training Targets

Physically-based
Land Surface Model(s)

atmosphere
T2-meters
vegetation
Tskin
LAI
snow
SWE
p(z)
T(z)
SLWC
grain size
soil
Tsurf
moisture

backscatter
\(\sigma_{VH}\)
\(\sigma_{VV}\)
Spatiotemporal Variability
Relevancy Scenarios

- **Scenario 1**: Benchmark Analysis
 - Passive MW Assimilation only
- **Scenario 2**: Comparative Analysis
 - Passive MW vs. Active MW vs. LIDAR
- **Scenario 3**: Multi-sensor Analysis
 - single-sensor platform
 - multi-sensor platform
 - constellation of sensors
Global snow mission planning will require evidence of achievable science via OSSE

- Land Information System (LIS) provides “nature run” plus assimilation framework
- TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments
- Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
 - Enables integration of T_b, σ_0, and δh in geophysical realm (i.e., SWE and snow depth)
 - Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework

- Snow OSSE is on-going → open to suggestions!
Global snow mission planning will require evidence of achievable science via OSSE.

Land Information System (LIS) provides “nature run” plus assimilation framework.

TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments.

Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)

- Enables integration of T_b, σ_0, and δh in geophysical realm (i.e., SWE and snow depth).
- Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework.

Snow OSSE is on-going → open to suggestions!
Global snow mission planning will require evidence of achievable science via OSSE.

Land Information System (LIS) provides “nature run” plus assimilation framework.

TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments.

Machine learning maps model state(s) into observation space (i.e., T_b and σ_0).

- Enables integration of T_b, σ_0, and δh in geophysical realm (i.e., SWE and snow depth).
- Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework.

Snow OSSE is on-going → open to suggestions!
Global snow mission planning will require evidence of achievable science via OSSE.

Land Information System (LIS) provides “nature run” plus assimilation framework.

TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments.

Machine learning maps model state(s) into observation space (i.e., T_b and σ_0)
- Enables integration of T_b, σ_0, and δh in geophysical realm (i.e., SWE and snow depth)
- Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework.

Snow OSSE is on-going → open to suggestions!
Global snow mission planning will require evidence of achievable science via OSSE.

Land Information System (LIS) provides “nature run” plus assimilation framework.

TAT-C provides spatiotemporal sub-sampling of observations, including cost estimates and risk assessments.

Machine learning maps model state(s) into observation space (i.e., T_b and σ_0).

- Enables integration of T_b, σ_0, and δh in geophysical realm (i.e., SWE and snow depth).
- Multiple frequencies/polarizations/observations allow for flexibility and modularity in DA framework.

Snow OSSE is on-going — open to suggestions!
Thank You.

Questions and/or Comments?

Financial support provided by:
- NASA New Investigator Program (NNX14AI49G)
- NASA GRACE-FO Science Team (NNX16AF17G)
- NASA High Mountain Asia Science Team (NNX17AC15G)

High-performance computing support provided by UMD’s Division of Information Technology