SMAP Assimilation Impacts on Land Surface and Numerical Weather Prediction Models

Clay Blankenship (USRA)
Jonathan Case (ENSCO, Inc.)
William Crosson (USRA)
Christopher Hain (NASA-MSFC)
Bradley Zavodsky (NASA-MSFC)
Mission: Transition unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale.

- Close collaboration with numerous WFOs and National Centers across the country
- SPoRT activities began in 2002, first products to AWIPS in 2003
- Co-funded by NOAA since 2009 through Proving Ground activities
- Proven paradigm for transition of research and experimental data to operations

Benefit:
- Demonstrate capability of NASA and NOAA experimental products to weather applications and societal benefit
- Take satellite instruments with climate missions and apply data to solve shorter-term weather problems
Overview of Project

<table>
<thead>
<tr>
<th>Domain</th>
<th>CONUS</th>
<th>East Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assimilate SMAP in LIS</td>
<td>✓</td>
<td>In progress</td>
</tr>
<tr>
<td>Evaluate soil moisture vs. station measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupled NU-WRF Experiments (LIS+WRF)</td>
<td>Preliminary</td>
<td></td>
</tr>
<tr>
<td>Evaluate 48-h weather forecasts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refinement of methodology
- Vertical layers
- Bias correction methods
- Ensemble size, perturbations, weighting
Framework for running LSMs incorporating a wide variety of meteorological forcing data and land surface parameters
- Developed by NASA-GSFC
- Includes data assimilation capability.
- Can be run coupled with Advanced Research WRF.
- Using Noah 3.3 Land Surface Model (LSM) within LIS
- SPoRT maintains near-real-time and experimental LIS runs
 - SE US (3-km), shared with WFO’s
 - East Africa, shared with Kenya Meteorological Service (KMS)

References:
Kumar et al. (2006)
Peters-Lidard et al. (2007)
SPoRT LIS Unique Features

Full Continental U.S. (CONUS) domain with 0.03° (lat/lon) grid resolution

Unique characteristics of SPoRT-LIS:

- Real-time S-NPP/VIIRS Green Vegetation Fraction
- Albedo scaled to input vegetation
- Restart simulation strategy to produce real-time output (timeline below)
- SPoRT-LIS ingested and displayed in AWIPS II at select NOAA/NWS weather forecast offices
- Land surface variables available to initialize modeling applications (WRF and STRC/EMS/UEMS)

Current SPoRT-LIS CONUS domain, as displayed in AWIPS II
SPoRT LIS Web Interface

https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
or https://weather.msfc.nasa.gov/sport -> Real-Time Data
-> Land Information System
-> SPoRT LIS + SMAP DA
LIS Web Products from SPoRT: SMAP LIS

- 0-10 cm model soil moisture

https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
Sampling Strategy

- Level 2 data are available on 36-km EASE grid
- To take advantage of high resolution geophysical properties (topography, vegetation, soils), running model at 3-km
- SMAP observations are assimilated at each model grid point in their FOV
- Downscaling to preserve background variability implemented

Some QC applied on LIS grid

Depends on LSM/variable (e.g. Noah3.3+soil moisture)
- Precip (changed to 1 mm/hr)
- Frozen ground
- Snow on ground
- GVF>0.7
- Extreme values

Bias correction will be applied on LIS grid.

SMAP and LIS grids are not aligned. Near boundaries, keep only one observation per cell (closest good ob)

Data flag-based QC applied at observation resolution
- **Retrieval Quality Flag**
- Vegetation Opacity
- Vegetation Water
- Frozen Ground Fraction

SMAP (passive) 36-km cell

LIS grid (3-km)
Assimilation of SMAP Enhanced (9-km) Product

0-10 cm Volumetric Soil Moisture (%)

Note linear and square features (e.g., at arrows) on left resulting from the coarse 36-km resolution of the SMAP data. Reduced on right due to using 9-km Enhanced SMAP data.
Impact of Enhanced SMAP (correlations)

Y2015 0-10 cm SM SMAPENHDA-SMAPDA RCORR Diff at SCAN+USCRN Stations

Key:
- Red: -0.16
- Orange: -0.12
- Yellow: -0.08
- Light blue: -0.04
- Light gray: 0.00
- Dark gray: 0.04
- Dark blue: 0.08
- Purple: 0.12
- Light purple: 0.16
Bias Correction

- Assimilation systems assume unbiased observations
- LIS can apply point-by-point correction curves. Many implementations generate climatologies of model and obs at each grid point.
- We have implemented CDF matching aggregated by soil type
 - Described for SMOS in Blankenship et al. 2016 (IEEE TGRS)
 - Idea is to let the observations influence the model climatology
- Other methods will be explored including using only nearby points
- Using a thinner soil moisture layer may reduce forward operator error and subsequently the magnitude of bias corrections

Correction Curves
By Soil Type
SMAP Assimilation Reduces Errors due to Poor QC in Forcing Data

- Land surface models such as SPoRT LIS are forced using precipitation inputs (NLDAS-2 in this case).
- In 2015, NLDAS-2 included data from a bad rain gauge (consistently near zero) in southern Arkansas causing an anomalously dry soil moisture “bullseye” (upper left, arrow).
- Through assimilation of SMAP L2 soil moisture fields, which do not exhibit this feature (lower left), this anomaly is greatly reduced over time (upper right) to provide a more representative soil moisture field.
 - Snapshot is 24 days after beginning of assimilation.
 - This results in a more accurate depiction of local conditions.

0-2 m Column Integrated Relative Soil Moisture (%)
12Z 24 Apr 2015

Baseline SPoRT LIS

SPoRT LIS with SMAP DA

SMAP Retrieved Soil Moisture
0-5 cm, volumetric (m³/m³ x100)
Non-localized CDF-matching bias correction applied

LIS Difference
(SMAP DA Minus Baseline SPoRT)
Column Integrated RSM (%)

Credit: Youlong Xia, Pingping Xie (NCEP/EMC); David Mocko (NASA/GSFC)
Soil moisture discontinuities can occur in regions where different precipitation inputs are blended.

- NLDAS-2 uses radar-derived precipitation over U.S. and reanalysis outside of U.S.
- Results in anomalous dry conditions in southern Ontario (upper left, oval)
- SMAP retrieved soil moisture (lower left) does not have this feature.

Through assimilation of SMAP L2 soil moisture fields, this anomaly disappears over time (upper right) to provide a more representative soil moisture field.

This should help forecasters better assess current regional conditions and provide more accurate initialization of NWP models.
Previous Validation Results (SMOS DA)

<table>
<thead>
<tr>
<th></th>
<th>Near Surface (0-10 cm)</th>
<th>Root Zone (10-100 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.6%</td>
<td>23.5%</td>
</tr>
<tr>
<td>SMOS DA</td>
<td>-0.5%</td>
<td>21.8%</td>
</tr>
</tbody>
</table>
Quantitative Validation Results

Station Validation

Correlation

Bias

ubRMSE
SMAP Correlation change 2015

Y2015 0-10 cm SM SMAPENHDA-SPORTLIS RCORR Diff at SCAN+USCRN Stations

Key:
- Red: -0.16
- Red-orange: -0.12
- Orange: -0.08
- Light orange: -0.04
- Yellow: -0.04
- Grey: 0.00
- Blue: 0.04
- Light blue: 0.08
- Dark blue: 0.12
- Purple: 0.16
Y2016 0-10 cm SM SMAPENHDA-SPORFLIS RCORR Diff at SCAN+USCRN Stations
Possible Issues

- SMAP Data Accuracy
- Bias Correction
- AM/PM data
- Representativeness (point vs grid cell, also vertical) of validation data
- Depth discrepancies
 - (10 cm model layer, 5 cm or less SMAP measurement)
- Initial LIS is too hard to improve upon
 - 3-km resolution has more detail than 36 or 9-km observations
 - Forcing data (NLDAS-2) is high quality
New Validation Results (SMAP DA)

- Corr increases from .79 to .84 (NOBC)
- ubRMSE decreases from .054 to .043
New Validation Results (SMAP DA)

- Corr increases from .78 to 85 (NOBC)
- ubRMSE decreases from .071 to .057
New Validation Results (SMAP DA)

- Corr decreases from .93 to .67 (NOBC)
- ubRMSE increases from .031 to .059
Possible Issues (and findings)

- Bias Correction
 - NoBC run indicates BC has a minor effect on statistics
- AM/PM data
 - Validation of retrievals indicates small difference
- Representativeness (point vs grid cell, also vertical) of validation data
 - Previously got positive impact (correlations) with SMOS
 - Others getting good impact
- Depth discrepancies
 - (10 cm model layer, 5 cm or less SMAP measurement)
 - Experiment in progress
 - Previously got positive impact with SMOS
- Information content of 3-km LSM is too hard to match with 9-km obs
 - Previously got positive impact with SMOS
6-7 May 2015 Southern Plains tornado outbreak: NASA Unified-WRF (NU-WRF) sensitivity simulations
NASA Unified-WRF (NU-WRF) model runs: Model configuration and experiment details

- **Domain/grid set up (images at right)**
 - Contiguous U.S. at 9-km horizontal grid spacing
 - Convection-allowing 3-km mesh nested grid

- **Sixty-hour forecasts**
 - 0000 UTC 6 May to 1200 UTC 8 May
 - Initialized at 0000 UTC 6 May 2015
 - Initial/boundary conditions from NCEP Global Forecast System model

- **Model physics parameterization choices**
 - Noah land surface model (same as in LIS runs)
 - Convection: Scale-aware Kain-Fritsch (9-km grid only)
 - Planetary Boundary Layer: Yonsei University scheme
 - Microphysics: NASA/Goddard 4-ice parameterization
 - Radiation: NASA/Goddard short- and long-wave radiation schemes

- **Two land surface initialization simulations**
 - “sportlis”: 0-h land surface fields from SPoRT’s “operational” LIS run; no DA
 - “smapenhda”: 0-h land surface fields from SMAP-Enhanced DA LIS run
NASA Unified-WRF (NU-WRF) model runs:
Soil Moisture Initial Condition Differences on 3-km nest

SMAP-Enhanced data assimilation run generally produced drier soil moisture fields than sportlis.
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs generally simulated warmer/drier daytime temperatures/dewpoints, with slightly lower instability where convection/supercells developed.

All simulated fields shown are from the 21-hour NU-WRF forecast, valid on 2100 UTC 6 May 2017
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

24-hour NU-WRF forecasts and observed radar imagery valid at 0000 UTC 7 May 2015
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

25-hour NU-WRF forecasts and observed radar imagery valid at 0100 UTC 7 May 2015

Observed regional radar reflectivity (dBZ)
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

26-hour NU-WRF forecasts and observed radar imagery valid at 0200 UTC 7 May 2015
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

27-hour NU-WRF forecasts and observed radar imagery valid at 0300 UTC 7 May 2015
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

28-hour NU-WRF forecasts and observed radar imagery valid at 0400 UTC 7 May 2015

Observed regional radar reflectivity (dBZ)
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

29-hour NU-WRF forecasts and observed radar imagery valid at 0500 UTC 7 May 2015
NASA Unified-WRF (NU-WRF) model runs:
Slight improvement in simulated convective evolution

smapenhda-initialized NU-WRF runs more correctly retained convection in southern OK and northern TX into the overnight hours of 7 May 2015.

30-hour NU-WRF forecasts and observed radar imagery valid at 0600 UTC 7 May 2015
Future Plans

- Soil Moisture
 - Validation of soil moisture against ground probes
 - Investigation of bias correction methods
- Coupled NWP
 - Validation of 48-hr NWP forecasts
 - High-impact case studies
 - Comprehensive seasonal validation
- Africa domain
- Possible Alaska domain

https://weather.msfc.nasa.gov/sport
 -> Realtime Data
 -> SMAP Soil Moisture
Acknowledgments

• Land Information System Team (NASA-GSFC)
• SMAP Science Team and Early Adopters Team
• Steven Quiring, Texas A&M University (now @Ohio State U.)
• Brent McRoberts, Texas A&M University
• Funding: NASA Earth Science Division
 (ROSES 2015 Science Utilization of SMAP Mission Program)

Questions and Comments?

clay.blankenship@nasa.gov
http://weather.msfc.nasa.gov/sport/
Facebook: NASA.SPoRT
Twitter: @NASA_SPoRT